A Study of Anti-Rolling Tank on Floating Vessel

Author(s):  
Kyung Sung Kim ◽  
Byung Hyuk Lee ◽  
Moo-Hyun Kim ◽  
Jong-Chun Park ◽  
Han Suk Choi

Active anti-rolling tank (ART) is sophisticated equipment on a floating vessel to reduce roll motion for the slender ship-shape vessel. Three-dimensional panel based diffraction and radiation linear potential program employed to obtain hydrodynamic coefficients of floating vessel. For the ship motion, a BEM (Boundary Element Method)-based ship motion program was used and inner sloshing effects were conducted by a particle-based CFD (Computational Fluid Dynamics) program which is the Moving Particle Semi-implicit (MPS). By using panel program, the hydrodynamic coefficients were obtained in frequency domain, and then were converted into time domain ship motion simulation program. In this procedure, time memory effect was considered by Volterra series expansion. The ship motion program and sloshing program was coupled dynamically; inner tank received displacement, velocity and acceleration data from ship motion program and use them for inner tank motion, while the ship motion program was waiting external forces due to sloshing impact loads and inertia forces/moments from sloshing simulation program. Thus, two programs run simultaneously and allowed real time coupling effects of inner sloshing on vessel motion. By comparing response amplitude operator (RAO) of the vessel without anti-rolling tank, it was shown both values have good agreement. And then comparing between vessels with and without anti-rolling tank, it is shown that the effects of ART changed and shift RAOs. Furthermore, by changing the location of ART, location effects of ART were also investigated.

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Kyung Sung Kim ◽  
Moo-Hyun Kim ◽  
Jong-Chun Park

For oil/gas production/processing platforms, multiple liquid layers can exist and their respective sloshing motions can also affect operational effectiveness or platform performance. To numerically simulate those problems, a new multiliquid moving particle simulation (MPS) method is developed. In particular, to better simulate the relevant physics, robust self-buoyancy model, interface searching model, and surface-tension model are developed. The developed multiliquid MPS method is validated by comparisons against experiment in which three-liquid-sloshing experiment and the corresponding linear potential theory are given. The validated multiliquid MPS program is subsequently coupled with a vessel-motion program in time domain to investigate their dynamic-coupling effects. In case of multiple liquid layers, there exists a variety of sloshing natural frequencies for respective interfaces, so the relevant physics can be much more complicated compared with the single-liquid-tank case. The simulation program can also reproduce the detailed small-scale interface phenomenon called Kelvin–Helmholtz instability. The numerical simulations also show that properly designed liquid cargo tank can also function as a beneficial antirolling device.


Author(s):  
Senthuran Ravinthrakumar ◽  
Trygve Kristiansen ◽  
Babak Ommani

Abstract Coupling between moonpool resonance and vessel motion is investigated in two-dimensional and quasi three-dimensional settings, where the models are studied in forced heave and in freely floating conditions. The two-dimensional setups are with a recess, while the quasi three-dimensional setups are without recess. One configuration with recess is presented for the two-dimensional case, while three different moonpool sizes (without recess) are tested for the quasi three-dimensional setup. A large number of forcing periods, and three wave steepnesses are tested. Boundary Element Method (BEM) and Viscous BEM (VBEM) time-domain codes based on linear potential flow theory, and a Navier–Stokes solver with linear free-surface and body-boundary conditions, are implemented to investigate resonant motion of the free-surface and the model. Damping due to flow separation from the sharp corners of the moonpool inlets is shown to matter for both vessel motions and moonpool response around the piston mode. In general, the CFD simulations compare well with the experimental results. BEM over-predicts the response significantly at resonance. VBEM provides improved results compared to the BEM, but still over-predicts the response. In the two-dimensional study there are significant coupling effects between heave, pitch and moonpool responses. In the quasi three-dimensional tests, the coupling effect is reduced significantly as the moonpool dimensions relative to the displaced volume of the ship is reduced. The first sloshing mode is investigated in the two-dimensional case. The studies show that damping due to flow separation is dominant. The vessel motions are unaffected by the moonpool response around the first sloshing mode.


2015 ◽  
Author(s):  
Zhou Qinghua ◽  
Li Xiaoling ◽  
Yang Qi ◽  
B. Qin

The coupling effects of tank sloshing on the ship motion and wave-induced loads of a very large ethane carrier (VLEC) with 83000m3 loading capacity and four membrane tanks are systematically investigated. The ship motion equation coupled with tank sloshing is calculated in the frequency domain based on three dimensional linear potential flow theory. The added mass, damping coefficient and restoring stiffness correction due to tank sloshing are considered. The response amplitude operators (RAO) of ship motion and sectional loads with and without considering tank sloshing are obtained. Taking ship motion dynamic response as excitation input condition, the three dimensional fluid sloshing movement behavior and sloshing-induced impact pressure are simulated by the computational fluid dynamics (CFD) method. The Renormalized Group (RNG) k-ε turbulence model is selected and used with the Reynolds-Averaged Navier-Stokes (RANS) equation; the volume of fluid method is adopted to predict the free surface elevation. The results provide valuable references for the overall design and structural safety assessment of VLEC.


Author(s):  
Kyung Sung Kim ◽  
Moo Hyun Kim ◽  
Jong-Chun Park

For oil/gas production/processing platforms, multiple liquid layers can exist and their respective sloshing motions can also affect platform performance. To numerically simulate those problems, a new multi-liquid MPS (Moving Particle Simulation) method is developed. In particular, to better simulate the relevant physics, robust self-buoyancy model, interface searching model, and surface-tension model are developed. The developed multi-liquid MPS method is validated by comparisons against Molin et al’s (2012) three-liquid-sloshing experiment and the corresponding linear potential theory. The verified multi-liquid MPS program is subsequently coupled with a vessel-motion program in time domain to investigate their dynamic-coupling effects. In case of multiple liquid layers, there exist more than one sloshing natural frequencies, so the relevant physics can be much more complicated compared with the single-liquid-tank case. The numerical simulations also show that liquid cargo can function as a beneficial anti-rolling device.


Author(s):  
В.Ю. Семенова ◽  
К.И. Баканов

В статье рассматривается определение коэффициентов демпфирования и присоединенных масс, возникающих при совместной качке двух судов в условиях мелководья параллельно вертикальной стенке на основании решения трехмерной потенциальной задачи. Определение гидродинамических коэффициентов осуществляется на основании методов интегральных уравнений и зеркальных отображений. Представленное решение в отечественной практике является новым. В статье приводятся результаты расчетов коэффициентов присоединенных масс и демпфирования, возникающих при качке двух одинаковых судов, расположенных лагом к волнению и параллельно вертикальной стенке в зависимости от изменения расстояний как между судами, так и между судами и вертикальной стенкой. Проводится исследование влияния различных фарватеров на величины гидродинамических коэффициентов, а именно: мелководного фарватера, мелководного фарватера с вертикальной стенкой, мелководного фарватера со вторым параллельно качающимся судном и мелководного фарватера с вертикальной стенкой и вторым судном. Таким образом, в работе учитывается одновременное влияния мелководья, вертикальной стенки и второго судна. Показано увеличение значений коэффициентов присоединенных масс и демпфирования при уменьшении расстояний между судами и между судами и вертикальной стенкой. Также показано значительное совместное влияние вертикальной стенки и второго судна на коэффициенты присоединенных масс и демпфирования по сравнению с другими видами стесненных фарватеров. The article discusses the determination of damping coefficients and added masses arising from the joint motions of two ships in shallow water conditions parallel to the vertical wall based on the solution of a three-dimensional potential problem. Determination of hydrodynamic coefficients is carried out on the basis of the methods of integral equations and mirror images. The solution presented in the national practice is new The article presents the results of calculating the coefficients of added masses and damping arising from the motions of two identical ships located lagged to the sea and parallel to the vertical wall, depending on the change in the distances between the ships and between the ships and the vertical wall. A study is being made of the influence of various waterways on the values ​​of hydrodynamic coefficients, namely: a shallow waterway, a shallow waterway with a vertical wall, a shallow waterway with a second parallel oscillating ship and a shallow waterway with a vertical wall and a second ship. Thus, the work takes into account the simultaneous influence of shallow water, vertical wall and the second ship. An increase in the values of the coefficients of added masses and damping with a decrease in the distances between ships and between ships and the vertical wall is shown. It also shows a significant combined effect of the vertical wall and the second ship on the added mass and damping coefficients in comparison with other types of constrained waterways.


2017 ◽  
Author(s):  
James A. Coller ◽  
Andrew Silver ◽  
Okey Nwogu ◽  
Benjamin S.H. Connell

The US Nav has developed a real-time multi-ship ship motion forecasting system which combines forecast wave conditions with ship motion simulations to produce a prediction of the relative motions between two ships operating in a skin-to-skin configuration. The system utilizes two different simulation methods for predicting ship motions: MotionSim and Reduced Order Model (ROM) based on AEGIR. MotionSim is a fast three-dimensional panel method that is used to estimate the Response Amplitude Operators (RAOs) necessary for multi-ship motion predictions. The ROM works to maximize the accuracy of high fidelity ship motion prediction methods while maintaining the computational speed required for real-time forecasting. A model scale experiment was performed in 2015 on two Navy ships conventionally moored together. The predicted relative ship motions from MotionSim and ROM were compared to the model data using three different metrics: RMS (root mean square) ratio, correlation coefficient, and average angle measurement (AAM).This paper provides an overview of the two methods for predicting the multi-ship motions, a description of the model test, challenges faced during testing, and a discussion on the methodology of the evaluation and the results of each code correlation.


Author(s):  
Mirela Zalar ◽  
Louis Diebold ◽  
Eric Baudin ◽  
Jacqueline Henry ◽  
Xiao-Bo Chen

Sloshing, a violent behaviour of liquid contents in tanks submitted to the forced vessels’ motion on the sea represents one of the major considerations in LNG vessels design over several past decades. State of the art of sloshing analysis relies on small-scale sloshing model tests supported by extensive developments of CFD computation techniques, commonly studying one isolated tank submitted to the forced motion without their mutual interaction. In reality, wave-induced response of the vessel carrying liquid cargo is affected by internal liquid motion, and consequently, tank liquid flow is altered by the vessel motion in return. An efficient numerical model for dynamic coupling between motions exerted by tank liquid (sloshing) and rigid body motions of the vessel (seakeeping) was developed in Bureau Veritas, formulated under the assumptions of linear potential theory in frequency domain. As already experienced with anti-rolling tanks, strong coupling effect is perceived on the first order transverse motions. However, consequences of coupled motions on sloshing loads have not been explored yet. This paper presents comparative analysis of sloshing effects induced by coupled and non-coupled vessel motion, introduced as the excitation to 6 d.o.f. small-scale model test rig. Possible risk of coupled effects is demonstrated on the example of standard size of LNG carrier operating with partly filled cargo tanks.


Author(s):  
Ronghua Chen ◽  
Lie Chen ◽  
Wenxi Tian ◽  
Guanghui Su ◽  
Suizheng Qiu

In the typical boiling water reactor (BWR), each control rod guide tube supports four fuel assemblies via an orificed fuel support piece in which a channel is designed to be a potential corium relocation path from the core region to the lower head under severe accident conditions. In this study, the improved Moving Particle Semi-implicit (MPS) method was adopted to analyze the melt flow and ablation behavior in this region during a severe accident of BWR. A three-dimensional particle configuration was constructed for analyzing the melt flow behavior within the fuel support piece. Considering the symmetry of the fuel support piece, only one fourth of the fuel support was simulated. The eutectic reaction between Zr (the material of the corium) and stainless steel (the material of the fuel support piece) was taken into consideration. The typical melt flow and freezing behaviors within the fuel support piece were successfully reproduced by MPS method. In all the simulation cases, the melt discharged from the hole of the fuel support piece instead of plugging the fuel support piece. The results indicate that MPS method has the capacity to analyze the melt flow and solidification behavior in the fuel support piece.


Sign in / Sign up

Export Citation Format

Share Document