Instrumentation for the Advancement of Shell and Tube Heat Exchanger Design or for Implementing an Upgrade via a Retrofit Process
This paper presents the instruments developed for shell and tube heat exchangers and their measurements made in operating large scale HX units. These instruments provide in-situ, long-term direct measurement of temperatures and fluid flow rates that are important for evaluation of the desirable and undesirable effects of a HX design. Unique results of this instrumentation are the 3-dimensional measurements of temperature at the inlet, outlet, and along the length of heat exchanger tubes, total tube side flow, and individual tube flow measurements. The temperature measurements are interpolated in a 3-D computational space for design assessment and engineering evaluation. These results have been used to design upgrades for underperforming steam surface condensers. Data from these instruments, the evaluation process, and design effort could lead to development of a new class of better performing heat exchanger designs.