scholarly journals Temperature Prediction in 3013 Containers in K-Area Material Storage (KAMS) Facility Using Regression Methods

Author(s):  
Narendra K. Gupta

3013 containers are designed in accordance with the DOE-STD-3013-2004. These containers are qualified to store plutonium (Pu) bearing materials such as PuO2 for 50 years. DOT shipping packages such as the 9975 are used to store the 3013 containers in the K-Area Material Storage (KAMS) facility at Savannah River Site (SRS). DOE-STD-3013-2004 requires that a comprehensive surveillance program be set up to ensure that the 3013 container design parameters are not violated during the long term storage. To ensure structural integrity of the 3013 containers, thermal analyses using finite element models were performed to predict the contents and component temperatures for different but well defined parameters such as storage ambient temperature, PuO2 density, fill heights, weights, and thermal loading. Interpolation is normally used to calculate temperatures if the actual parameter values are different from the analyzed values. A statistical analysis technique using regression methods is proposed to develop simple polynomial relations to predict temperatures for the actual parameter values found in the containers. The analysis shows that regression analysis is a powerful tool to develop simple relations to assess component temperatures.

Author(s):  
T. Kurt Houghtaling ◽  
T. Eric Skidmore

This paper offers a practical means of qualifying previously loaded Type B packages for transportation onsite within the DOE complex after years of protected storage, while supporting the DOE program to maintain radworker dose as low as reasonable achievable (ALARA). Specifically, the paper discusses relevant packaging components and introduces part of a surveillance program carried out at the Savannah River Site supporting long-term storage of 3013-processed plutonium-bearing materials within closed 9975 packages and its application to DOE’s Equivalent Safety. Under normal service, maintenance is carried out annually to re-qualify the 9975 packagings for leak-tight transportation service. While in storage, however, annual maintenance was judged not to provide a significant increase in safety but to increase storage operation costs and to violate ALARA principles. Hence, a surveillance program was developed to investigate and confirm predictions of storage-related behavior for 9975 packaging materials, including the performance of O-ring seals and Celotex® insulation. The combination of analytical evaluations with surveillance data is shown sufficient to ensure that the 9975 packages can accommodate 1) time at storage temperature and 2) cumulative radiation dose without compromising subsequent performance under regulatory Normal Conditions of Transport or site-specific credible accident conditions.


Author(s):  
Steve J. Hensel ◽  
Si Lee

The Department of Energy (DOE) Model 9975 Package is used to store plutonium bearing materials at the Savannah River Site (SRS). The plutonium is packaged in a 3013 container which consists of a convenience container, an inner welded container, and an outer welded container [1]. All containers are made of stainless steel. A portion of the population of 3013 containers have plutonium oxide with alkaline earth chloride salts. Temperatures and temperature gradients within the 3013 container are useful to evaluate the transport of water vapor and potential corrosion in the inner container, particularly near the weld region. Thermal analyses of plutonium oxide packaged in 3013 containers which are stored in 9975 shipping packages were performed with emphasis on the temperatures and temperature gradients between the plutonium oxide and the inner container weld region. Thermal analyses investigated various plutonium oxide fill levels, heat generation, plutonium oxide thermal conductivity and 9975 package boundary conditions. Not surprisingly, the results suggest the source heat is mostly dissipated radially outward as opposed to the vertical direction, and the 9975 package is insensitive to an adiabatic top and bottom surface boundary condition versus an adiabatic bottom surface assumption. The temperatures at locations of interest, such as the inner container weld region and the plutonium oxide centerline temperature may be correlated as a linear function of thermal loading and ambient temperature.


2021 ◽  
Vol 13 (5) ◽  
pp. 2756
Author(s):  
Federica Vitale ◽  
Maurizio Nicolella

Because the production of aggregates for mortar and concrete is no longer sustainable, many attempts have been made to replace natural aggregates (NA) with recycled aggregates (RA) sourced from factories, recycling centers, and human activities such as construction and demolition works (C&D). This article reviews papers concerning mortars with fine RA from C&D debris, and from the by-products of the manufacturing and recycling processes of building materials. A four-step methodology based on searching, screening, clustering, and summarizing was proposed. The clustering variables were the type of aggregate, mix design parameters, tested properties, patents, and availability on the market. The number and the type of the clustering variables of each paper were analysed and compared. The results showed that the mortars were mainly characterized through their physical and mechanical properties, whereas few durability and thermal analyses were carried out. Moreover, few fine RA were sourced from the production waste of construction materials. Finally, there were no patents or products available on the market. The outcomes presented in this paper underlined the research trends that are useful to improve the knowledge on the suitability of fine RA from building-related processes in mortars.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3154
Author(s):  
Md Mohosin Rana ◽  
Hector De la Hoz Siegler

Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked polymer that can interact with human cells and play an important role in the development of tissue morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desirable structural and physical properties required for tissue regeneration, but insufficient mechanical strength, biocompatibility, and biomimicry for tissue development remain obstacles for their application in tissue engineering. The structural integrity and physical properties of the hydrogels depend on the crosslinks formed between polymer chains during synthesis. A variety of design variables including crosslinker content, the combination of natural and synthetic polymers, and solvent type have been explored over the past decade to develop PNIPAm-based scaffolds with optimized properties suitable for tissue engineering applications. These design parameters have been implemented to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological environment and guide the required cellular functions for cartilage tissue regeneration. The current advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar, PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density on tuning these properties. Finally, the challenges and perspectives of considering these two design variables for developing PNIPAm-based scaffolds are outlined.


1988 ◽  
Vol 1 (21) ◽  
pp. 176
Author(s):  
C. David Anglin ◽  
William F. Baird ◽  
Etienne P.D. Mansard ◽  
R. Douglas Scott ◽  
David J. Turcke

There is a general lack of knowledge regarding the nature and magnitude of loads acting on armour units used for the protection of rubblemound coastal structures. Thus, a comprehensive design procedure incorporating both the hydraulic stability and the structural integrity of the armour units does not exist. This paper presents the results of a detailed parametric study of the structural response of armour units to wave-induced loading in a physical breakwater model. The effect of the following design parameters is investigated: breakwater slope, armour unit location, wave period and wave height. This research has made a number of significant contributions towards the development of a comprehensive design procedure for concrete armour units. It has identified a linear relationship between the wave-induced stress in the armour units and the incident wave height. In addition, it has shown that the conditional probability of waveinduced stress given wave height can be estimated by a log-normal distribution. Finally, a preliminary design chart has been developed which incorporates both the structural integrity and the hydraulic stability of the armour units.


Author(s):  
Linbo Zhu ◽  
Yifei Hou ◽  
Abdel-Hakim Bouzid ◽  
Jun Hong

Metal to metal contact between joint surfaces is widely used in bolted joints to obtain a rigid and a high performance connection. However, a significant amount of clamping load is lost when the joint is subjected to mechanical and thermal loading including creep and fatigue. In practice, to prevent bolt loosening, additional parts such as spring washers, double nut, spring lock washers, Nyloc nut and so on are used. Those methods are costly and influence the stability of the joint and affect its structural integrity. It is well established that a small compression displacement in clamping parts leads to a big clamping load loss in stiff joints. This paper discusses the relationship between connection stiffness and clamping load and presents a method that improves clamping load retention during operation by a careful design of the member contact surface shape. A single bolted joint with two clamping parts is modeled using finite element method (FEM). A method is proposed to obtain a specific stiffness by an optimized geometrical shape of the joint contact surfaces. The result shows that the contact surface shape based on a gradually varying gap can improve the retention of the initial clamping load. Furthermore, a formula of the connection stiffness based on the curve fitting technique is proposed to predict residual clamping load under different external load and loosening.


Author(s):  
Ahmed M. Alotaibi ◽  
Sohel Anwar

Abstract 3D force sensors have been proven its effectiveness and appropriateness for robotics applications. It has been used in medical and physical therapy applications such as surgical robot and Instrument Assisted Soft Tissue Manipulation (IASTM) in the recent times. The 3D force sensors have been utilized in robot assisted surgeries and modern physical therapy devices to monitor the 3D forces for improved performances. The 3D force sensor performance and specifications depend on different design parameters, such as structural configuration, sensing elements placements, and load criterion. In this paper, different bioinspired structure configurations have been investigated and analyzed to obtain the optimal 3D force sensor configuration in terms of structural integrity, compactness, safety factor, and strain sensitivity. Finite Element Analysis (FEA) simulation was used for the analysis to minimize the time of the development cycle.


Author(s):  
A. Martin ◽  
S. Bosse ◽  
F. Lestang

Integrity evaluation methods for nuclear Reactor Pressure Vessels (RPVs) under Pressurised Thermal Shock (PTS) loading are applied by French Utility. They are based on the analysis of the behaviour of cracks under PTS loading conditions due to the emergency cooling during PTS transient like SBLOCA. This paper explains the Research and Development program started at Electricite´ De France about the cooling phenomena of a PWR vessel after a Pressurised Thermal Shock. The numerical results are obtained with the E.D.F ThermalHydraulic code (Code_Saturne) coupled with the thermal-solid code SYRTHES to take into account the conjugate heat transfer on the cooling of the vessel. We first explain the global methodology with a progress report on the state of the art of the tools available to simulate the different scenari displayed within the frame of the plant life project in order to reassess the integrity of the RPV, taking into account the evolution of some input data, such as the new value of end of life (EOL) fluence, the feedback results of surveillance program and the evolution of the functional requirements. The main results are presented and are related to the evaluation of the RPV integrity during a Small Break Loss Of Coolant Accident transient for 900 and 1300 MWe nuclear plant. On the whole, the main purpose of the numerical CFD studies is to accurately estimate the distribution of fluid temperature in the down comer and the heat transfer coefficients on the inner RPV surface for a fracture mechanics computation which will subsequently assess the associated RPV safety margins. In a second time, a new analysis is performed to assess an accurate temperature distribution in the RPV. Indeed, from a physical phenomena point of view, the EDF thermalhydraulic tool Code_Saturne is now qualified in order to assess single phase transient but in the case where the cold legs are partially filled with steam, it becomes a two-phase problem and new important effects occur, such as condensation due to the emergency core cooling injections of sub-cooled water. Thus, an advanced prediction of RPV thermal loading during these transients requires sophisticated two-phase, local scale, 3D codes. In that purpose, a program has been set up to extend the capabilities of the Neptune_CFD two-phase solver which is the tool able to solve two phase flow configuration. In a same time, A simplified approach has showed that for a type of transient weakly uncovered, a free surface calculation was sufficient to respect the necessary criteria of safety. A Qualification study was carried out on the Hybiscus experimental E.D.F facility, representing a cold leg with ECC injection and a third down comer. Temperature profiles have been compared and are presented and analysed here, showing encouraging results.


Author(s):  
M. Ferraiuolo ◽  
A. Martucci ◽  
F. Battista ◽  
D. Ricci

Today’s rocket engines regeneratively cooled using high energy cryogenic propellants (e.g. LOX and LH2, LOX and LCH4) play a major role due to the high combustion enthalpy (10–13.4 kJ/kg) and the high specific impulse of these propellants. In the frame of the HYPROB/Bread project, whose main goal is to design build and test a 30 kN regeneratively cooled thrust chamber, a breadboard has been conceived in order to: • investigate the behavior of the injector that will be employed in the full scale final demonstrator, • to obtain a first estimate of the heat flux on the combustion chamber for models validation, • to implement a “battleship” chamber for a first verification of the stability of the combustion The breadboard is called HS (Heat Sink) and it is made of CuCrZr (Copper Chromium Zirconium alloy), Inconel 718 and TZM (Titanium Zirconium Molybdenum alloy). The aim of the present paper is to illustrate the thermostructural design conducted on the breadboard by means of a Finite Element Method code taking into account the viscoplastic behavior of the adopted materials. An optimization process has been carried out in order to keep the structural integrity of the breadboard maximizing the life cycles of the component. Heat fluxes generated by combustion gases have been evaluated by means of CFD quick analyses, while convection and radiation with the external environment have not been considered in order to be as conservative as possible from a thermostructural point of view. Transient thermal analyses and static structural analyses have been performed by means of ANSYS code adopting an axisymmetric model of the chamber. These analyses have demonstrated that the Breadboard can withstand the design goal of 3 thermo-mechanical cycles with a safety factor equal to 4 considering a firing time equal to 3 seconds.


Sign in / Sign up

Export Citation Format

Share Document