Comparison of Two Ductile Crack Propagation Models of GTN and CZM for Pipe Steel Fracture

Author(s):  
Junqiang Wang ◽  
Haitao Wang ◽  
Nan Lin ◽  
Honglian Ma ◽  
Jinlong Wang

The ductile crack propagation behavior of pressure equipment has always been the focus of structural integrity assessment. It is very important to find an effective three-dimensional (3D) damage model, which overcomes the geometric discontinuity and crack tip singularity caused by cracking. The cohesive force model (CZM), which is combined with the extended finite element method (XFEM), can solve element self-reconfiguration near the crack tip and track the crack direction. Based on the theory of void nucleation, growth and coalescence, the Gurson-Tvergaard-Needleman (GTN) damage model is used to study the fracture behavior of metallic materials, and agrees well with the experimental results. Two 3D crack propagation models are used to compare crack propagation behavior of pipe steel from the crack tip shape, fracture critical value of CTOA and CTOD, constraint effect, calculation accuracy, efficiency and mesh dependence etc. The results show that the GTN model has excellent applicability in the analysis of crack tip CTOD/CTOA, constraint effect, tunneling crack and so on, and its accuracy is high. However, the mesh of crack growth region needs to be extremely refined, and the element size is required to be 0.1–0.3mm and the calculation amount is large. The CZM model combined with XFEM has the advantages of high computational efficiency and free crack growth path, and the advantages are obvious in simulating the shear crack, combination crack and fatigue crack propagation. But, the crack tip shape and thickness effect of ductile tearing specimen can not be simulated, and the CTOA value of local crack tip is not accurate.

1974 ◽  
Vol 96 (4) ◽  
pp. 249-254 ◽  
Author(s):  
L. A. James

Linear-elastic fracture mechanics techniques were used to characterize the fatigue-crack propagation behavior of Incoloy 800 in an air environment over the temperature range 75 to 1200 deg F (24 to 649 deg F). Crack growth rates were measured over the range 5×10−7 to 5×10−5 in./cycle. Material Grades 1 and 2 were found to exhibit essentially the same behavior over this range. In general, crack growth rates increased with increasing test temperature, although the increases were less then previously noted for austenitic stainless steels. This difference is probably related to the superior oxidation resistance of Incoloy 800.


Author(s):  
Youri N. Lenets ◽  
Alonso Peralta ◽  
Ross Miller ◽  
James Neumann

The majority of fatigue crack growth tests worldwide makes use of the compact tension (CT) specimens that are not necessarily representative of cracks developing under service conditions in highly stressed components of a jet engine. Over the years other geometries have been designed to facilitate a study of relatively small, semi- or quarter-elliptically shaped surface flaws subjected to high tensile and compressive stresses. Despite an extensive use by the aerospace community, practical aspects of testing and data analysis relevant to the complex surface- or corner-flawed geometries are not regulated by a commonly accepted set of rules. Two types of test specimens — CT and surface-crack tension (SCT) — were machined from a forged and heat treated Inconel 718. For both geometries the crack orientation and propagation direction with respect to the original forging were the same. The CT specimens were tested in accordance with the ASTM Standard E647 as well as using an alternative compression pre-cracking procedure. After correct application of the compression pre-cracking to the CT geometry both approaches had yielded reasonably consistent results. At high ΔK values both studied geometries also produced similar results, however, as the ΔK values decreased, a trend towards slower crack growth rates in the SCT specimens became evident. In order to address a so-called small-crack effect, several SCT specimens received much smaller crack starter notches produced by the focused ion beam (FIB) technology. The results of the present study highlight the importance of the appropriate material properties for accurate and reliable service life prediction of the critical aerospace propulsion hardware with particular emphasis on the influence of specimen/crack geometry and test method on the fatigue crack propagation behavior of jet engine alloys.


Author(s):  
Diego F. B. Sarzosa ◽  
Claudio Ruggieri

In structural assessment procedures the crack driving force is usually estimated numerically based on the J -Integral definition because its determination is well established in many finite element codes. The nuclear industry has extensive fracture toughness data expressed in terms of J-Integral and huge experience with its applications and limitations. On the other hand, material fracture toughness is typically measured by Crack Tip Opening Displacement (CTOD) parameter using the hinge plastic model or double clip gauge technique. The parameter CTOD has a wide acceptance in the Oil and Gas Industry (OGI). Also, the OGI has a lot of past data expressed in terms of CTOD and the people involved are very familiar with this parameter. Furthermore, the CTOD parameter is based on the physical deformation of the crack faces and can be visualized and understood in an easy way. There is a unique relationship between J and CTOD beyond the validity limits of Linear Elastic Fracture Mechanics (LEFM) for stationary cracks. However, if ductile crack propagation occurs, the crack tip deformation profile and stress-strain fields ahead of the crack tip will change significantly when compared to the static case. Thus, the stable crack propagation may change the well established relationship between J and CTOD for stationary cracks compromising the construction of resistance curves J-Δa from CTOD-Δa data or vice versa. This investigation is a complementary study on the relationship between J-Integral and CTOD under ductile crack propagation of a previous work. The theoretical definition of CTOD using the 90° method and the empirical expression used in the standard ASTM E1820 are analyzed under stable crack growth. Plane-strain finite element computations including stationary and growth analysis are conducted for 3P SE(B) and clamped SE(T) specimens having different notch length to specimen width ratios in the range of 0.1–0.5. For the growth analysis, the models are loaded to levels of J consistent to a crack growth resistance curve representative of a typical pipeline steel. A computational cell methodology to model Mode I crack extension in ductile materials is utilized to describe the evolution of J with a. Laboratory testing of an API 5L X70 steel at room temperature using standard, deeply cracked C(T) specimens is used to measure the crack growth resistance curve for the material and to calibrate the key cell parameter defined by the initial void fraction, f 0. The presented results provide additional understanding of the effects of ductile crack growth on the relationship between J-Integral and CTOD for standard and non-standard fracture specimens. Specific procedures for evaluation of CTOD-R curves using SE(T) and SE(B) specimens with direct application to structural integrity assessment and defect analysis in pipelines and risers will be proposed, yielding accurate and robust relations between J-Integral and CTOD.


Author(s):  
Yoru Wada

This paper addresses the characteristics of the fatigue crack propagation behavior of high-strength low-alloy steels in a high-pressure hydrogen gas environment, especially in terms of the role of cycle frequency. Several heats of the steels, with different steel strengths and microstructures, were tested in high-pressure gaseous hydrogen utilizing fracture mechanics specimens. When the cycle frequency decreases, they showed higher crack propagation rates (da/dN) at or above a certain K (= KmaxT) on a Kmax-da/dN diagram, while no cycle frequency dependencies were observed on da/dN below KmaxT. This KmaxT and observed da/dN were different among the various steels, and resulted from the difference in hydrogen gas embrittlement susceptibility caused by metallurgical variables (e.g. hardness, microstructure, impurity segregations). It is shown that the values of KmaxT observed in the steels were almost equivalent to KIH-R (the threshold stress intensity factor for hydrogen-assisted crack growth) of the steels tested which were obtained with slow rising load tests (K̇ = <0.08MPa-m1/2/s) in high-pressure gaseous hydrogen. Therefore, the increase in da/dN above KmaxT is attributed to the occurrence of hydrogen-assisted crack growth (da/dt), which is well explained by the KIH-R parameter.


2010 ◽  
Vol 638-642 ◽  
pp. 378-383 ◽  
Author(s):  
Hui Zhang ◽  
Peng Cheng Qu ◽  
Yuuji Sakaguchi ◽  
Hiroyuki Toda ◽  
Masakazu Kobayashi ◽  
...  

Synchrotron X-ray microtomography was used to investigate the three-dimensional fatigue crack propagation behavior of an aluminum alloy. Local crack growth rates along specimen thickness were calculated. Crack observation revealed that crack propagation was retarded in three regions where there exist overlapping crack segments. Crack growth retardation was found to occur in these crack overlapping regions due to stress shielding. Observation of crack propagation process indicated that one of the overlapping crack segments initiated from the twisted crack. Crack tip opening displacement was measured and it was found that crack opening was larger in single planar crack region than that in crack overlapping region.


Author(s):  
Masaki Nagai ◽  
Kiminori Murai ◽  
Toshio Nagashima ◽  
Naoki Miura

In petrochemical and nuclear power plants, inner surface of components, such as pressure vessels and piping, which are made of carbon steels or low-alloy steels, is often cladded by austenitic stainless steels to improve the corrosion resistance of those components. In the evaluation of a crack postulated near the inner surface of cladded components, the following two different kinds of cracks are often assumed: One is a surface crack penetrated through cladding and the other is a subsurface crack under cladding. In order to evaluate the structural integrity of those components in a rational manner, it is important to investigate the crack propagation behavior. In particular, it should be evaluated whether a subsurface crack penetrates through cladding or is arrested at the interface between cladding and base metal. In this study, ductile crack propagation analysis for a subsurface elliptical crack in cladded plates was performed using elastic-plastic XFEM, which can model the crack independent of finite elements.


Author(s):  
Dilshad Ahmad ◽  
Karali Patra ◽  
Mokarram Hossain ◽  
Amit Kumar

ABSTRACT Dielectric elastomer-based transducers are rapidly gaining importance with the syntheses of new polymers that can potentially be used as dielectric materials. However, these materials are always prone to fracture in the presence of cracks and flaws. Failures originate from flaws (or notches), and a complete fracture may take place due to the propagation of cracks. The present work investigates the crack propagation behavior of two popular polymers, VHB 4910 and Ecoflex, that are widely used as dielectric elastomers. In this case, tensile loadings in laterally constrained boundary conditions are considered. The average crack propagation speed for Ecoflex is higher than that for VHB, implying that Ecoflex will fail earlier than that of VHB under similar conditions. Moreover, with increasing notch lengths at a fixed strain rate, the average crack propagation speed decreases appreciably but becomes constant for comparatively larger notches. The results also conclude that the average crack propagation speed and normalized crack tip diameter remain higher for VHB than for Ecoflex for larger normalized notch lengths. It is observed that the average crack propagation speed increases with strain rates, whereas the normalized crack tip diameter is independent of strain rates. Experimental results obtained here will provide a useful comparative insight to understand the failure behavior of two polymers widely used as dielectric elastomers.


Sign in / Sign up

Export Citation Format

Share Document