Simultaneous fingerprint and high-wavenumber fiber-optic Raman endoscopy for in vivo diagnosis of laryngeal cancer

Author(s):  
Kan Lin ◽  
Wei Zheng ◽  
Jianfeng Wang ◽  
Chwee Ming Lim ◽  
Zhiwei Huang
Theranostics ◽  
2017 ◽  
Vol 7 (14) ◽  
pp. 3517-3526 ◽  
Author(s):  
Kan Lin ◽  
Wei Zheng ◽  
Chwee Ming Lim ◽  
Zhiwei Huang

2020 ◽  
Vol 10 (24) ◽  
pp. 8836
Author(s):  
Pankaj Singh ◽  
Prabodh Pandey ◽  
Shivam Shukla ◽  
Naren Naik ◽  
Asima Pradhan

Fiber-optic probes are imperative for in-vivo diagnosis of cancer. Depending on the access to a diseased organ and the mutations one aims to sense, the probe designs vary. We carry out a detailed numerical study of the efficacy of the common probe geometries for epithelial cancer characterization based on spatially resolved reflectance data. As per the outcomes of this comparative study, a probe has been manufactured and using Monte Carlo look up table based inversion scheme, the absorption and scattering coefficients of the epithelium mimicking top layer have been recovered from noisy synthetic as well as experimental data.


2016 ◽  
Vol 7 (9) ◽  
pp. 3705 ◽  
Author(s):  
Kan Lin ◽  
Wei Zheng ◽  
Chwee Ming Lim ◽  
Zhiwei Huang

2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Mehmet A. Kosoglu ◽  
Robert L. Hood ◽  
Ye Chen ◽  
Yong Xu ◽  
Marissa Nichole Rylander ◽  
...  

Shallow light penetration in tissue has been a technical barrier to the development of light-based methods for in vivo diagnosis and treatment of epithelial carcinomas. This problem can potentially be solved by utilizing minimally invasive probes to deliver light directly to target areas. To develop this solution, fiber optic microneedles capable of delivering light for either imaging or therapy were manufactured by tapering step-index silica-based optical fibers employing a melt-drawing process. Some of the microneedles were manufactured to have sharper tips by changing the heat source during the melt-drawing process. All of the microneedles were individually inserted into ex vivo pig skin samples to demonstrate the feasibility of their application in human tissues. The force on each microneedle was measured during insertion in order to determine the effects of sharper tips on the peak force and the steadiness of the increase in force. Skin penetration experiments showed that sharp fiber optic microneedles that are 3 mm long penetrate through 2 mm of ex vivo pig skin specimens. These sharp microneedles had a minimum average diameter of 73 μm and a maximum tip diameter of 8 μm. Flat microneedles, which had larger tip diameters, required a minimum average diameter of 125 μm in order to penetrate through pig skin samples. Force versus displacement plots showed that a sharp tip on a fiber optic microneedle decreased the skin’s resistance during insertion. Also, the force acting on a sharp microneedle increased more steadily compared with a microneedle with a flat tip. However, many of the sharp microneedles sustained damage during skin penetration. Two designs that did not accrue damage were identified and will provide a basis of more robust microneedles. Developing resilient microneedles with smaller diameters will lead to transformative, novel modes of transdermal imaging and treatment that are less invasive and less painful for the patient.


2016 ◽  
Author(s):  
Jianfeng Wang ◽  
Kan Lin ◽  
Wei Zheng ◽  
Khek Yu Ho ◽  
Ming Teh ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. 153303382199007
Author(s):  
Wenlin Liu ◽  
Jiandong Zhan ◽  
Rong Zhong ◽  
Rui Li ◽  
Xiaoli Sheng ◽  
...  

Background: Laryngeal cancer is one of the most common malignant tumors among head and neck cancers. Accumulating studies have indicated that long noncoding RNAs (lncRNAs) play an important role in laryngeal cancer occurrence and progression, however, the functional roles and relative regulatory mechanisms of lncRNA growth arrest-specific transcript 5 (GAS5) in laryngeal cancer progression remain unclear. Methods: The expression of lncRNA GAS5 in both laryngeal cancer tissues and cell lines was evaluated using quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay. The relationships between lncRNA GAS5 expression and clinical parameters were also analyzed. To determine the biological function of lncRNA GAS5, a lncRNA GAS5-specific plasmid was first transfected into laryngeal cancer cells using lentiviral technology. Cell counting kit-8 assay, flow cytometry, and Transwell assays were used to detect in vitro cell proliferation, apoptosis, cycle distribution, and metastasis abilities, respectively. Furthermore, in vivo cell growth experiments were also performed using nude mice. Additionally, western blotting was performed to identify the underlying regulatory mechanism. Results: In the current study, lncRNA GAS5 was downregulated in laryngeal cancer tissues and its low expression was closely associated with poor tumor differentiation, advanced TNM stage, lymph node metastasis, and shorter overall survival time. In addition, lncRNA GAS5 upregulation significantly inhibited laryngeal cancer cell proliferation both in vitro and in vivo. Moreover, in response to lncRNA GAS5 overexpression, more laryngeal cancer cells were arrested at the G2/M stage, accompanied by increased cell apoptosis rates and suppressed migration and invasion capacities. Mechanistically, our data showed that the overexpression of lncRNA GAS5 significantly regulated the PI3K/AKT/mTOR signaling pathway. Conclusion: LncRNA GAS5 might act as a suppressor gene during laryngeal cancer development, as it suppressed cell proliferation and metastasis by regulating the PI3K/AKT/mTOR signaling pathway; thus, lncRNA GAS5 is a promising therapeutic biomarker for the treatment of laryngeal cancer.


2021 ◽  
Vol 14 (7) ◽  
pp. 622
Author(s):  
Arne Krüger ◽  
Ana Paula de Jesus Santos ◽  
Vanessa de Sá ◽  
Henning Ulrich ◽  
Carsten Wrenger

Aptamers are single-stranded DNA or RNA molecules which are submitted to a process denominated SELEX. SELEX uses reiterative screening of a random oligonucleotide library to identify high-affinity binders to a chosen target, which may be a peptide, protein, or entire cells or viral particles. Aptamers can rival antibodies in target recognition, and benefit from their non-proteic nature, ease of modification, increased stability, and pharmacokinetic properties. This turns them into ideal candidates for diagnostic as well as therapeutic applications. Here, we review the recent accomplishments in the development of aptamers targeting emerging viral diseases, with emphasis on recent findings of aptamers binding to coronaviruses. We focus on aptamer development for diagnosis, including biosensors, in addition to aptamer modifications for stabilization in body fluids and tissue penetration. Such aptamers are aimed at in vivo diagnosis and treatment, such as quantification of viral load and blocking host cell invasion, virus assembly, or replication, respectively. Although there are currently no in vivo applications of aptamers in combating viral diseases, such strategies are promising for therapy development in the future.


Sign in / Sign up

Export Citation Format

Share Document