fiber optic probes
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 12)

H-INDEX

25
(FIVE YEARS 2)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 508
Author(s):  
Vincenzo Romano Marrazzo ◽  
Armando Laudati ◽  
Michele Vitale ◽  
Francesco Fienga ◽  
Gianni Iagulli ◽  
...  

In the proposed work, a fiber-optic-based sensor network was employed for the monitoring of the liquid resin infusion process. The item under test was a panel composed by a skin and four stringers, sensorized in such a way that both the temperature and the resin arrival could be monitored. The network was arranged with 18 Fiber Bragg Gratings (FBGs) working as temperature sensors and 22 fiber optic probes with a modified front-end in order to detect the resin presence. After an in-depth study to find a better solution to install the sensors without affecting the measurements, the system was investigated using a commercial Micron Optics at 0.5 Hz, with a passive split-box connected in order to be able to sense all the sensors simultaneously. The obtained results in terms of resin arrival detection at different locations and the relative temperature trend allowed us to validate an infusion process numerical model, giving us better understanding of what the actual resin flow was and the time needed to dry preform filling during the infusion process.


2021 ◽  
Author(s):  
Alexa Hernandez-Arenas ◽  
J. Rodrigo Velez-Cordero ◽  
Juan Hernandez-Cordero

Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1047
Author(s):  
Jill Dill Pasteris ◽  
Yeunook Bae ◽  
Daniel E. Giammar ◽  
Sydney N. Dybing ◽  
Claude H. Yoder ◽  
...  

The identification and characterization of lead-bearing and associated minerals in scales on lead pipes are essential to understanding and predicting the mobilization of lead into drinking water. Despite its long-recognized usefulness in the unambiguous identification of crystalline and amorphous solids, distinguishing between polymorphic phases, and rapid and non-destructive analysis on the micrometer spatial scale, the Raman spectroscopy (RS) technique has been applied only occasionally in the analysis of scales in lead service lines (LSLs). This article illustrates multiple applications of RS not just for the identification of phases, but also compositional and structural characterization of scale materials in harvested lead pipes and experimental pipe-loop/recirculation systems. RS is shown to be a sensitive monitor of these characteristics through analyses on cross-sections of lead pipes, raw interior pipe walls, particulates captured in filters, and scrapings from pipes. RS proves to be especially sensitive to the state of crystallinity of scale phases (important to their solubility) and to the specific chemistry of phases precipitated upon the introduction of orthophosphate to the water system. It can be used effectively alone as well as in conjunction with more standard analytical techniques. By means of fiber-optic probes, RS has potential for in situ, real-time analysis within water-filled pipes.


2021 ◽  
Author(s):  
Zeina ELRAWASHDEH ◽  
Philippe REVEL ◽  
Christine PRELLE ◽  
Frédéric LAMARQUE

Abstract This research study presents the design and the high precision manufacture procedure of a fiber-optic displacement sensor. It is composed of two fiber-optic probes associated with a structure of a cones’ grating. The sensor is characterized by its ability to measure the linear displacement for an axis performing a helicoidal motion. This motion has been demonstrated on a high precision lathe; where the spindle provided the rotational motion, associated to a translational motion on the linear stage. This allowed to obtain the two simultaneous motions. The displacement of the translational stage is measured by the sensor in real time.Firstly, a highly precise geometric model of the reflector part for the sensor was developed. This model provided a specific geometry for the cones-assembled grating, which has been precisely manufactured. The geometric parameters and the surface characteristics of each step in the fabricated grating were both identified in situ on the lathe. The agreement between simulation and experimental results is excellent. The performances of the fiber-optic displacement sensor were identified in-situ on the lathe. The analysis of the voltage output signals from the two fiber-optic probes is used to measure the grating displacement. The unbalanced rotation due to non-centered axes was also characterized. The sensor provided a micrometric resolution, on a measurement range of more than one centimeter.


2020 ◽  
Vol 10 (24) ◽  
pp. 8836
Author(s):  
Pankaj Singh ◽  
Prabodh Pandey ◽  
Shivam Shukla ◽  
Naren Naik ◽  
Asima Pradhan

Fiber-optic probes are imperative for in-vivo diagnosis of cancer. Depending on the access to a diseased organ and the mutations one aims to sense, the probe designs vary. We carry out a detailed numerical study of the efficacy of the common probe geometries for epithelial cancer characterization based on spatially resolved reflectance data. As per the outcomes of this comparative study, a probe has been manufactured and using Monte Carlo look up table based inversion scheme, the absorption and scattering coefficients of the epithelium mimicking top layer have been recovered from noisy synthetic as well as experimental data.


2020 ◽  
Vol 87 (1) ◽  
pp. 112-120
Author(s):  
A. A. Shatskaya ◽  
D. N. Artemyev ◽  
I. A. Bratchenko

2019 ◽  
Vol 9 (5) ◽  
pp. 949 ◽  
Author(s):  
M. Gandhi ◽  
Suoda Chu ◽  
K. Senthilnathan ◽  
P. Babu ◽  
K. Nakkeeran ◽  
...  

The survey focuses on the most significant contributions in the field of fiber optic plasmonic sensors (FOPS) in recent years. FOPSs are plasmonic sensor-based fiber optic probes that use an optical field to measure the biological agents. Owing to their high sensitivity, high resolution, and low cost, FOPS turn out to be potential alternatives to conventional biological fiber optic sensors. FOPS use optical transduction mechanisms to enhance sensitivity and resolution. The optical transduction mechanisms of FOPS with different geometrical structures and the photonic properties of the geometries are discussed in detail. The studies of optical properties with a combination of suitable materials for testing the biosamples allow for diagnosing diseases in the medical field.


2019 ◽  
Vol 129 ◽  
pp. 79-86 ◽  
Author(s):  
Hariharan Manoharan ◽  
Prasanta Kalita ◽  
Shalini Gupta ◽  
V.V.R. Sai

Sign in / Sign up

Export Citation Format

Share Document