Addressed FBG-structures for tire strain measurement

Author(s):  
Timur Agliullin ◽  
Robert Gubaidullin ◽  
Vladimir Ivanov ◽  
Oleg G. Morozov ◽  
Airat Sakhabutdinov
Keyword(s):  
Author(s):  
Philip D. Hren

The pattern of bend contours which appear in the TEM image of a bent or curled sample indicates the shape into which the specimen is bent. Several authors have characterized the shape of their bent foils by this method, most recently I. Bolotov, as well as G. Möllenstedt and O. Rang in the early 1950’s. However, the samples they considered were viewed at orientations away from a zone axis, or at zone axes of low symmetry, so that dynamical interactions between the bend contours did not occur. Their calculations were thus based on purely geometric arguments. In this paper bend contours are used to measure deflections of a single-crystal silicon membrane at the (111) zone axis, where there are strong dynamical effects. Features in the bend contour pattern are identified and associated with a particular angle of bending of the membrane by reference to large-angle convergent-beam electron diffraction (LACBED) patterns.


Author(s):  
Y.P. Manshin ◽  
◽  
E.Yu. Manshina ◽  

The article considers an algorithm for analyzing the results of field strain-measurement studies of machine structures, which allows obtaining data for the modernization of elements in the form of coefficients of parameter changes. As the object of application of the method, the design element of the header was selected, which had failures due to insufficient endurance under cyclic bending stresses.


2021 ◽  
Vol 61 ◽  
pp. 102440
Author(s):  
Sravanthi Alamandala ◽  
R.L.N. Sai Prasad ◽  
Rathish Kumar Pancharathi ◽  
V.D.R. Pavan ◽  
P. Kishore

2020 ◽  
Vol 6 (3) ◽  
pp. 196-199
Author(s):  
Alina Carabello ◽  
Constanze Neupetsch ◽  
Michael Werner ◽  
Christian Rotsch ◽  
Welf-Guntram Drossel ◽  
...  

AbstractTo increase learning success in surgical training, physical simulators are supplemented by measurement technology to generate and record objective feedback and error detection. An opportunity to detect fractures following hip stem implantation early can be measurement of occurring strains on bone surface. These strains can be determined while using strain gauges, digital image correlation (DIC) or photoelasticity. In this research strain gauges and DIC were compared regarding their suitability as strain measurement tools for use in physical simulators. Therefore a testing method was described to replicate the implantation of a hip stem. Testing devices modelled on a realistic prosthesis were pressed into prepared porcine femora in a two-step procedure with a material testing machine. The local strains occurring on bone surface were determined using an optical measurement system for DIC and strain gauges. The initial fractures in the tested femora are located medial-anterior in most cases (73,6%). With increasing indentation depth of the test device, the strains on bone surface increase. Comparing the local strains determined by DIC and strain gauges consistencies in curves are noticeable. Maximal determined strains before fracturing amount to 0,69% with strain gauges and 0,75% with DIC. In the range of the fracture gap, strain gradients are determined by using DIC. However the detected surfaces are of low quality caused by gaps and motion artefacts. The results show strains on bone surfaces for early fracture detection are measurable with strain gauges and DIC. DIC is assessed as less suitable compared to strain gauges. Furthermore strain gauges have greater level of integration and economic efficiency, so they are preferred the use in surgical training simulators.


2019 ◽  
Vol 86 (3) ◽  
pp. 175-183
Author(s):  
Julian Lich ◽  
Tino Wollmann ◽  
Angelos Filippatos ◽  
Maik Gude ◽  
Robert Kuschmierz ◽  
...  

AbstractIn-situ measurements of the deformation and of the structural dynamical behavior of moving composite structures, such as rotors made of glass fiber reinforced polymers (GFRP), are necessary in order to validate newly developed simulation models. Local methods like strain gauges and fiber Bragg gratings lack spatial resolution, while contactless optical methods like image correlation or speckle interferometry suffer from noise effects in the presence of fast rigid body movements. A novel compact sensor – based on the diffraction grating method – is introduced for spatially and temporally resolved strain measurement. The use of a line camera allows the measurement of vibrations up to several tens of kHz. With a scanning movement, strain fields at submillimeter resolution can be recorded. The use of two diffraction orders and an objective lens reduces cross sensitivities to rigid body movements on the strain measurement by two to three orders of magnitude. A validation on a GFRP probe was conducted in a quasi-static tensile test with an optical extensometer up to 14500 µϵ. Furthermore, a strain measurement on a moving rotor at surface speeds up to 75 m/s was performed and the results were compared with those of strain gauges as a gold standard. The statistical standard deviation was around 10 µϵ and independent of the rotational speed.


Author(s):  
Tsunemichi Takahama ◽  
Kazuma Nishimura ◽  
Seiichiro Ninomiya ◽  
Yoshihiro Matsumoto ◽  
Yutaka Harada

To assess the stresses on small-bore piping, we have developed a new tool that can be easily installed on a piping surface without adhesive bonding and that measures strains on piping quickly and accurately. This tool, which we call a “strain gauge holder,” is patented in Japan. As the tool can contain four strain gauge rosettes, with each rosette comprising three elements, the longitudinal strains and sheer strains can be measured synchronously at any four points precisely 90 degrees apart, with one point in each quadrant. By mockup testing, we confirmed that the measured bending and torsional strains by the holder were almost equivalent to the measured strains by the bonded gauges with adhesive, and that the holder made it possible to synchronously measure all of the strains resulting from the moment of force acting in three axes on the piping by measuring the bending and torsional strains in each quadrant. The strain gauge holder is expected to significantly reduce the pre- and post-working time required for strain measurement and stress assessment of piping in real plants.


Sign in / Sign up

Export Citation Format

Share Document