Hyperparameter selection for OSEM SPECT reconstruction in mesh domain with total variation regularization

2010 ◽  
Author(s):  
A. Krol ◽  
Y. Lu ◽  
L. Vogelsang ◽  
B. Yu ◽  
Y. Xu ◽  
...  
2019 ◽  
Vol 2019 (13) ◽  
pp. 147-1-147-8
Author(s):  
Sandamali Devadithya ◽  
David Castañóon

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 591
Author(s):  
Manasavee Lohvithee ◽  
Wenjuan Sun ◽  
Stephane Chretien ◽  
Manuchehr Soleimani

In this paper, a computer-aided training method for hyperparameter selection of limited data X-ray computed tomography (XCT) reconstruction was proposed. The proposed method employed the ant colony optimisation (ACO) approach to assist in hyperparameter selection for the adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm, which is a total-variation (TV) based regularisation algorithm. During the implementation, there was a colony of artificial ants that swarm through the AwPCSD algorithm. Each ant chose a set of hyperparameters required for its iterative CT reconstruction and the correlation coefficient (CC) score was given for reconstructed images compared to the reference image. A colony of ants in one generation left a pheromone through its chosen path representing a choice of hyperparameters. Higher score means stronger pheromones/probabilities to attract more ants in the next generations. At the end of the implementation, the hyperparameter configuration with the highest score was chosen as an optimal set of hyperparameters. In the experimental results section, the reconstruction using hyperparameters from the proposed method was compared with results from three other cases: the conjugate gradient least square (CGLS), the AwPCSD algorithm using the set of arbitrary hyperparameters and the cross-validation method.The experiments showed that the results from the proposed method were superior to those of the CGLS algorithm and the AwPCSD algorithm using the set of arbitrary hyperparameters. Although the results of the ACO algorithm were slightly inferior to those of the cross-validation method as measured by the quantitative metrics, the ACO algorithm was over 10 times faster than cross—Validation. The optimal set of hyperparameters from the proposed method was also robust against an increase of noise in the data and can be applicable to different imaging samples with similar context. The ACO approach in the proposed method was able to identify optimal values of hyperparameters for a dataset and, as a result, produced a good quality reconstructed image from limited number of projection data. The proposed method in this work successfully solves a problem of hyperparameters selection, which is a major challenge in an implementation of TV based reconstruction algorithms.


2021 ◽  
Vol 13 (13) ◽  
pp. 2514
Author(s):  
Qianwei Dai ◽  
Hao Zhang ◽  
Bin Zhang

The chaos oscillation particle swarm optimization (COPSO) algorithm is prone to binge trapped in the local optima when dealing with certain complex models in ground-penetrating radar (GPR) data inversion, because it inherently suffers from premature convergence, high computational costs, and extremely slow convergence times, especially in the middle and later periods of iterative inversion. Considering that the bilateral connections between different particle positions can improve both the algorithmic searching efficiency and the convergence performance, we first develop a fast single-trace-based approach to construct an initial model for 2-D PSO inversion and then propose a TV-regularization-based improved PSO (TVIPSO) algorithm that employs total variation (TV) regularization as a constraint technique to adaptively update the positions of particles. B by adding the new velocity variations and optimal step size matrices, the search range of the random particles in the solution space can be significantly reduced, meaning blindness in the search process can be avoided. By introducing constraint-oriented regularization to allow the optimization search to move out of the inaccurate region, the premature convergence and blurring problems can be mitigated to further guarantee the inversion accuracy and efficiency. We report on three inversion experiments involving multilayered, fluctuated terrain models and a typical complicated inner-interface model to demonstrate the performance of the proposed algorithm. The results of the fluctuated terrain model show that compared with the COPSO algorithm, the fitness error (MAE) of the TVIPSO algorithm is reduced from 2.3715 to 1.0921, while for the complicated inner-interface model the fitness error (MARE) of the TVIPSO algorithm is reduced from 1.9539 to 1.5674.


2011 ◽  
Vol 82 (9) ◽  
pp. 093504 ◽  
Author(s):  
Weixin Qian ◽  
Shuangxi Qi ◽  
Wanli Wang ◽  
Jinming Cheng ◽  
Dongbing Liu

Author(s):  
Mitsuru Utsugi

Summary This paper presents a new sparse inversion method based on L1 norm regularization for 3D magnetic data. In isolation, L1 norm regularization yields model elements which are unconstrained by the input data to be exactly zero, leading to a sparse model with compact and focused structure. Here, we complement the L1 norm with a penalty minimizing total variation, the L1 norm of the model gradients; it is expected that the sharp boundaries of the subsurface structure are not compromised by incorporating this penalty. Although this penalty is widely used in the geophysical inversion studies, it is often replaced by an alternative quadratic penalty to ease solution of the penalized inversion problem; in this study, the original definition of the total variation, i.e., form of the L1 norm of the model gradients, is used. To solve the problem with this combined penalty of L1 norm and total variation, this study introduces alternative direction method of multipliers (ADMM), which is a primal-dual optimization algorithm that solves convex penalized problems based on the optimization of an augmented Lagrange function. To improve the computational efficiency of the algorithm to make this method applicable to large-scale magnetic inverse problems, this study applies matrix compression using the wavelet transform and the preconditioned conjugate gradient method. The inversion method is applied to both synthetic tests and real data, the synthetic tests demonstrate that, when subsurface structure is blocky, it can be reproduced almost perfectly.


Sign in / Sign up

Export Citation Format

Share Document