Development of a high-speed wideband wavelength tunable infra-red laser source for real time wind turbine array sensing applications

2011 ◽  
Author(s):  
Philip Mitchell ◽  
Adrian Janssen ◽  
Bahar Partov Poor
1995 ◽  
Author(s):  
Rod Clark ◽  
John Karpinsky ◽  
Gregg Borek ◽  
Eric Johnson
Keyword(s):  

Author(s):  
Kenneth Krieg ◽  
Richard Qi ◽  
Douglas Thomson ◽  
Greg Bridges

Abstract A contact probing system for surface imaging and real-time signal measurement of deep sub-micron integrated circuits is discussed. The probe fits on a standard probe-station and utilizes a conductive atomic force microscope tip to rapidly measure the surface topography and acquire real-time highfrequency signals from features as small as 0.18 micron. The micromachined probe structure minimizes parasitic coupling and the probe achieves a bandwidth greater than 3 GHz, with a capacitive loading of less than 120 fF. High-resolution images of submicron structures and waveforms acquired from high-speed devices are presented.


2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

2014 ◽  
Vol 988 ◽  
pp. 544-547
Author(s):  
Guang Li

A novel high speed and ultra long-haul radio-over-fiber (ROF) system based on Dual Photoelectric Arms Coherent Modulation (DPACM) and Optical Duo-Binary Coding (ODBC) is proposed, and demonstrated. The signal spectrum bandwidth, generated by ODBC based on the first order DPACM, is half of non-return-to-zero (NRZ ) signal spectrum bandwidth. The secondary order DPACM generates a 40-GHz Millimeter-wave (mm-wave) that is transmitted over fiber (ROF). The simulation results show that, the bit rate can be up to 40 Gbps and the transmission distance is over 1500 Km, based on the ROF system with a 0 dBm continuous-wave laser source, multiple stages Er-Doped Fiber Amplifier (EDFA), a standard single mode fiber (SSMF) with a dispersion of 17 ps/nm/Km and a attenuation of 0.2 dB/Km.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Florian Roessler ◽  
André Streek

Abstract In laser processing, the possible throughput is directly scaling with the available average laser power. To avoid unwanted thermal damage due to high pulse energy or heat accumulation during MHz-repetition rates, energy distribution over the workpiece is required. Polygon mirror scanners enable high deflection speeds and thus, a proper energy distribution within a short processing time. The requirements of laser micro processing with up to 10 kW average laser powers and high scan speeds up to 1000 m/s result in a 30 mm aperture two-dimensional polygon mirror scanner with a patented low-distortion mirror configuration. In combination with a field programmable gate array-based real-time logic, position-true high-accuracy laser switching is enabled for 2D, 2.5D, or 3D laser processing capable to drill holes in multi-pass ablation or engraving. A special developed real-time shifter module within the high-speed logic allows, in combination with external axis, the material processing on the fly and hence, processing of workpieces much larger than the scan field.


Sign in / Sign up

Export Citation Format

Share Document