Low‐frequency (ka<10) monostatic scattering and elastic wave generation produced by end insonification of homogeneous, finite rods (l/a=8)

1999 ◽  
Vol 105 (2) ◽  
pp. 1393-1393
Author(s):  
Timothy J. Yoder ◽  
Joseph A. Bucaro ◽  
Brian H. Houston
2021 ◽  
Vol 11 (7) ◽  
pp. 3124
Author(s):  
Alya Alhammadi ◽  
Jin-You Lu ◽  
Mahra Almheiri ◽  
Fatima Alzaabi ◽  
Zineb Matouk ◽  
...  

A numerical simulation study on elastic wave propagation of a phononic composite structure consisting of epoxy and tungsten carbide is presented for low-frequency elastic wave attenuation applications. The calculated dispersion curves of the epoxy/tungsten carbide composite show that the propagation of elastic waves is prohibited inside the periodic structure over a frequency range. To achieve a wide bandgap, the elastic composite structure can be optimized by changing its dimensions and arrangement, including size, number, and rotation angle of square inclusions. The simulation results show that increasing the number of inclusions and the filling fraction of the unit cell significantly broaden the phononic bandgap compared to other geometric tunings. Additionally, a nonmonotonic relationship between the bandwidth and filling fraction of the composite was found, and this relationship results from spacing among inclusions and inclusion sizes causing different effects on Bragg scatterings and localized resonances of elastic waves. Moreover, the calculated transmission spectra of the epoxy/tungsten carbide composite structure verify its low-frequency bandgap behavior.


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


2013 ◽  
Vol 31 (11) ◽  
pp. 1159-1167 ◽  
Author(s):  
B. Keshavarzi ◽  
R. Karimi ◽  
I. Najafi ◽  
M. H. Ghazanfari ◽  
M. Amani ◽  
...  

2004 ◽  
Vol 270-273 ◽  
pp. 1645-1652
Author(s):  
Shinichi Hattori ◽  
Toshiro Kamada ◽  
Takashi Shimada ◽  
Yasuhiro Takemura ◽  
Kanji Matsuhashi

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jiangnan Xiao ◽  
Chuang Zhao ◽  
Xingxing Feng ◽  
Xu Dong ◽  
Jiangli Zuo ◽  
...  

With the development trend of wireless and broadband in the communication link and even the whole information industry, the demand of high-frequency microwave bandwidth has been increasing. The RoF network system solves the problem of spectrum congestion in low-frequency band by providing an effective technology for the distribution of high-frequency microwave signals over optical fiber links. However, the traditional mm-wave generation technique is limited by the bandwidth of electronic devices. It is difficult to generate high-frequency and low-phase noise mm-wave signals with pure electrical components. The mm-wave communication technology based on photon assisted can overcome the bandwidth bottleneck of electronic devices and provide the potential for developing the low-cost infrastructure demand of broadband mobile services. This paper will briefly explain the characteristics of the RoF network system and the advantages of high-frequency mm-wave. Then we, respectively, introduce the modulation schemes of RoF mm-wave generation based on photon assisted including directly modulated laser (DML), external modulation, and optical heterodyne. The review mainly focuses on a variety of different mm-wave generation technologies including multifrequency vector mm-wave. Furthermore, we list several approaches to realize the large capacity data transmission techniques and describe the digital signal processing (DSP) algorithm flow in the receiver. In the end, we summarize the RoF network system and look forward to the future.


Author(s):  
Shinichi Hattori ◽  
Takashi Shimada ◽  
Ryousuke Taniguchi ◽  
Kanji Matsuhashi

Sign in / Sign up

Export Citation Format

Share Document