scholarly journals DIAGNOSTIC METHOD USING LOW FREQUENCY ELASTIC WAVE FOR DEFECT OF TUNNEL LINING

2003 ◽  
pp. 13-24
Author(s):  
Seiichi MATSUI ◽  
Yuichi YAMADA ◽  
Fumihiro OSADA
2021 ◽  
Vol 11 (7) ◽  
pp. 3124
Author(s):  
Alya Alhammadi ◽  
Jin-You Lu ◽  
Mahra Almheiri ◽  
Fatima Alzaabi ◽  
Zineb Matouk ◽  
...  

A numerical simulation study on elastic wave propagation of a phononic composite structure consisting of epoxy and tungsten carbide is presented for low-frequency elastic wave attenuation applications. The calculated dispersion curves of the epoxy/tungsten carbide composite show that the propagation of elastic waves is prohibited inside the periodic structure over a frequency range. To achieve a wide bandgap, the elastic composite structure can be optimized by changing its dimensions and arrangement, including size, number, and rotation angle of square inclusions. The simulation results show that increasing the number of inclusions and the filling fraction of the unit cell significantly broaden the phononic bandgap compared to other geometric tunings. Additionally, a nonmonotonic relationship between the bandwidth and filling fraction of the composite was found, and this relationship results from spacing among inclusions and inclusion sizes causing different effects on Bragg scatterings and localized resonances of elastic waves. Moreover, the calculated transmission spectra of the epoxy/tungsten carbide composite structure verify its low-frequency bandgap behavior.


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


2013 ◽  
Vol 31 (11) ◽  
pp. 1159-1167 ◽  
Author(s):  
B. Keshavarzi ◽  
R. Karimi ◽  
I. Najafi ◽  
M. H. Ghazanfari ◽  
M. Amani ◽  
...  

2004 ◽  
Vol 270-273 ◽  
pp. 1645-1652
Author(s):  
Shinichi Hattori ◽  
Toshiro Kamada ◽  
Takashi Shimada ◽  
Yasuhiro Takemura ◽  
Kanji Matsuhashi

Author(s):  
Shinichi Hattori ◽  
Takashi Shimada ◽  
Ryousuke Taniguchi ◽  
Kanji Matsuhashi

1995 ◽  
Vol 120 (3) ◽  
pp. 677-692 ◽  
Author(s):  
Roland Gritto ◽  
Valeri A. Korneev ◽  
Lane R. Johnson

Sign in / Sign up

Export Citation Format

Share Document