Three-Dimensional Kinematics of Wheelchair Propulsion across Racing Speeds

1995 ◽  
Vol 12 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Yong Tai Wang ◽  
Helga Deutsch ◽  
Martin Morse ◽  
Brad Hedrick ◽  
Tim Millikan

Three-dimensional (3-D) kinematic features of wheelchair propulsion across four selected speeds were investigated based on 10 skilled male wheelchair athletes. Kinematic data were collected through 3-D cinematography with a mirror. The results demonstrated that as the speed increased, the drive phase was performed faster while the range of the push-angle remained constant. More trunk forward lean motion resulted in a large initial contact angle in front of the top dead center of the pushrim. Recovery involved a large range of vertical motion in terms of shoulder abduction and hyperextension in order to increase the distance over which a greater velocity could be developed. To maximize wheelchair racing speed, it was critical to obtain the maximal shoulder and elbow velocities at initial contact of the drive phase and the maximal hand velocity at the end of the recovery phase.

1998 ◽  
Vol 15 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Thomas J. O’Connor ◽  
Rick N. Robertson ◽  
Rory A. Cooper

Three-dimensional kinematic variables and their relationship to the physiology of racing wheelchair propulsion were studied. Six male wheelchair athletes performed two trials (medium and maximum speed) of 3 min each. VO2, VO2/kg, VE, and HR were measured. Results showed that at medium speed, wrist velocity on hand contact was significantly correlated with VO2/kg. At maximum speed, elbow velocity during preparatory phase was significantly correlated with VO2. Stepwise regression showed wrist trajectory angle and elbow velocity during preparatory phase were significantly correlated with VO2/kg. Results indicate that kinematic variables recorded prior to and on hand contact with the pushrim are significant variables in developing a more efficient racing wheelchair propulsion technique. Results of this study indicate a need to educate coaches of wheelchair track athletes concerning the best racing wheelchair propulsion technique.


1998 ◽  
Vol 120 (4) ◽  
pp. 533-535 ◽  
Author(s):  
H.-W. Wu ◽  
L. J. Berglund ◽  
F.-C. Su ◽  
B. Yu ◽  
A. Westreich ◽  
...  

An instrumented wheel system for three-dimensional kinetic analysis of upper extremity during wheelchair propulsion has been designed and validated. This system allows the direct measurements of three-dimensional dynamic forces and moments on the handrim during wheelchair propulsion in a laboratory setting as well as in the field. Static loading tests showed a high linearity and little drift (coefficient of determination, r2 > 0.999). Under dynamic loading, the instrumented wheel provided the well-matched measurement forces and moments with the predicted values from the inverse dynamic method using video-based kinematic data (correlation coefficient, ρ > 0.97). The three-dimensional handrim forces and moments during wheelchair propulsion by a non-disabled subject were demonstrated.


2018 ◽  
Vol 57 (2) ◽  
pp. 625-633
Author(s):  
Sangheon Park ◽  
Sukhoon Yoon ◽  
Sang-Kyoon Park ◽  
Jiseon Ryu

Author(s):  
Satoshi Fujita ◽  
Keisuke Minagawa ◽  
Mitsuru Miyazaki ◽  
Go Tanaka ◽  
Toshio Omi ◽  
...  

This paper describes three-dimensional isolation performance of seismic isolation system using air bearings. Long period seismic waves having predominant period of from a few seconds to a few ten seconds have recently been observed in various earthquakes. Also resonances of high-rise buildings and sloshing of petroleum tanks in consequence of long period seismic waves have been reported. Therefore the isolation systems having very long natural period or no natural period are required. In a previous paper [1], we proposed an isolation system having no natural period by using air bearings. Additionally we have already reported an introduction of the system, and have investigated horizontal motion during earthquake in the previous paper. It was confirmed by horizontal vibration experiment and simulation in the previous paper that the proposed system had good performance of isolation. However vertical motion should be investigated, because vertical motion varies horizontal frictional force. Therefore this paper describes investigation regarding vertical motion of the proposed system by experiment. At first, a vertical excitation test of the system is carried out so as to investigate vertical dynamic property. Then a three-dimensional vibration test using seismic waves is carried out so as to investigate performance of isolation against three-dimensional seismic waves.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shanshan Chen ◽  
Zhiguang Liu ◽  
Huifeng Du ◽  
Chengchun Tang ◽  
Chang-Yin Ji ◽  
...  

AbstractKirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO2/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate. Large-range nano-kirigami like 3D deformations are clearly observed and reversibly engineered, with scalable pitch size down to 0.975 μm. Broadband nonresonant and narrowband resonant optical reconfigurations are achieved at visible and near-infrared wavelengths, respectively, with a high modulation contrast up to 494%. On-chip modulation of optical helicity is further demonstrated in submicron nano-kirigami at near-infrared wavelengths. Such small-size and high-contrast reconfigurable optical nano-kirigami provides advanced methodologies and platforms for versatile on-chip manipulation of light at nanoscale.


2021 ◽  
Vol 503 (3) ◽  
pp. 3309-3325
Author(s):  
Sabine Bellstedt ◽  
Aaron S G Robotham ◽  
Simon P Driver ◽  
Jessica E Thorne ◽  
Luke J M Davies ◽  
...  

ABSTRACT We analyse the metallicity histories of ∼4500 galaxies from the GAMA survey at z < 0.06 modelled by the SED-fitting code ProSpect using an evolving metallicity implementation. These metallicity histories, in combination with the associated star formation histories, allow us to analyse the inferred gas-phase mass–metallicity relation. Furthermore, we extract the mass–metallicity relation at a sequence of epochs in cosmic history, to track the evolving mass–metallicity relation with time. Through comparison with observations of gas-phase metallicity over a large range of redshifts, we show that, remarkably, our forensic SED analysis has produced an evolving mass–metallicity relationship that is consistent with observations at all epochs. We additionally analyse the three-dimensional mass–metallicity–SFR space, showing that galaxies occupy a clearly defined plane. This plane is shown to be subtly evolving, displaying an increased tilt with time caused by general enrichment, and also the slowing down of star formation with cosmic time. This evolution is most apparent at lookback times greater than 7 Gyr. The trends in metallicity recovered in this work highlight that the evolving metallicity implementation used within the SED-fitting code ProSpect produces reasonable metallicity results over the history of a galaxy. This is expected to provide a significant improvement to the accuracy of the SED-fitting outputs.


2007 ◽  
Vol 39 (Supplement) ◽  
pp. S9
Author(s):  
Weerawat Limroongreungrat ◽  
Yong Tai Wang ◽  
Mark D. Geil ◽  
Jeffery T. Johnson ◽  
Ben F. Johnson ◽  
...  

2013 ◽  
Vol 36 (5) ◽  
pp. 561-562
Author(s):  
James G. Phillips ◽  
Rowan P. Ogeil

AbstractEvidence from egocentric space is cited to support bicoding of navigation in three-dimensional space. Horizontal distances and space are processed differently from the vertical. Indeed, effector systems are compatible in horizontal space, but potentially incompatible (or chaotic) during transitions to vertical motion. Navigation involves changes in coordinates, and animal models of navigation indicate that time has an important role.


2021 ◽  
Vol 25 (1) ◽  
pp. 30-37
Author(s):  
Sarah Klopp Christensen ◽  
Aaron Wayne Johnson ◽  
Natalie Van Wagoner ◽  
Taryn E. Corey ◽  
Matthew S. McClung ◽  
...  

Irish dance has evolved in aesthetics that lead to greater physical demands on dancers' bodies. Irish dancers must land from difficult moves without letting their knees bend or heels touch the ground, causing large forces to be absorbed by the body. The majority of injuries incurred by Irish dancers are due to overuse (79.6%). The purpose of this study was to determine loads on the body of female Irish dancers, including peak force, rise rate of force, and impulse, in eight common Irish hard shoe and soft shoe dance movements. It was hypothesized that these movements would produce different ground reac- tion force (GRF) characteristics. Sixteen female Irish dancers were recruited from the three highest competitive levels. Each performed a warm-up, reviewed the eight movements, and then performed each movement three times on a force plate, four in soft shoes and four in hard shoes. Ground reaction forces were measured using a three-dimensional force plate recording at 1,000 Hz. Peak force, rise rate, and vertical impulse were calculated. Peak forces normalized by each dancer's body weight for each of these variables were significantly different between move- ments and shoe types [F(15, 15)= 65.4, p < 0.01; F(15, 15) = 65.0, p < 0.01; and F(15, 15) = 67.4, p < 0.01, respectively]. The variable years of experience was not correlated with peak force, rise rate, or impulse (p > 0.40). It is concluded that there was a large range in GRF characteristics among the eight movements studied. Understanding the force of each dance step will allow instructors to develop training routines that help dancers adapt gradually to the high forces experienced in Irish dance training and competitions, thereby limiting the potential for overuse injuries.


2005 ◽  
Vol 128 (1) ◽  
pp. 116-127 ◽  
Author(s):  
Stephen Wiedmann ◽  
Bob Sturges

Compliant mechanisms for rigid part mating exist for prismatic geometries. A few instances are known of mechanisms to assemble screw threads. A comprehensive solution to this essentially geometric problem comprises at least three parts: parametric equations for nut and bolt contact in the critical starting phase of assembly, the possible space of motions between these parts during this phase, and the design space of compliant devices which accomplish the desired motions in the presence of friction and positional uncertainty. This work concentrates on the second part in which the threaded pair is modeled numerically, and contact tests are automated through software. Tessellated solid models were used during three-dimensional collision analysis to enumerate the approximate location of the initial contact point. The advent of a second contact point presented a more constrained contact state. Thus, the bolt is rotated about a vector defined by the initial two contact points until a third contact location was found. By analyzing the depth of intersection of the bolt into the nut as well as the vertical movement of the origin of the bolt reference frame, we determined that there are three types of contacts states present: unstable two-point, quasi-stable two-point, stable three point. The space of possible motions is bounded by these end conditions which will differ in detail depending upon the starting orientations. We investigated all potential orientations which obtain from a discretization of the roll, pitch, and yaw uncertainties, each of which has its own set of contact points. From this exhaustive examination, a full contact state history was determined, which lays the foundation for the design space of either compliant mechanisms or intelligent sensor-rich controls.


Sign in / Sign up

Export Citation Format

Share Document