Spatial Kinematic Analysis of Threaded Fastener Assembly

2005 ◽  
Vol 128 (1) ◽  
pp. 116-127 ◽  
Author(s):  
Stephen Wiedmann ◽  
Bob Sturges

Compliant mechanisms for rigid part mating exist for prismatic geometries. A few instances are known of mechanisms to assemble screw threads. A comprehensive solution to this essentially geometric problem comprises at least three parts: parametric equations for nut and bolt contact in the critical starting phase of assembly, the possible space of motions between these parts during this phase, and the design space of compliant devices which accomplish the desired motions in the presence of friction and positional uncertainty. This work concentrates on the second part in which the threaded pair is modeled numerically, and contact tests are automated through software. Tessellated solid models were used during three-dimensional collision analysis to enumerate the approximate location of the initial contact point. The advent of a second contact point presented a more constrained contact state. Thus, the bolt is rotated about a vector defined by the initial two contact points until a third contact location was found. By analyzing the depth of intersection of the bolt into the nut as well as the vertical movement of the origin of the bolt reference frame, we determined that there are three types of contacts states present: unstable two-point, quasi-stable two-point, stable three point. The space of possible motions is bounded by these end conditions which will differ in detail depending upon the starting orientations. We investigated all potential orientations which obtain from a discretization of the roll, pitch, and yaw uncertainties, each of which has its own set of contact points. From this exhaustive examination, a full contact state history was determined, which lays the foundation for the design space of either compliant mechanisms or intelligent sensor-rich controls.

2021 ◽  
Vol 11 (4) ◽  
pp. 1948
Author(s):  
Yuan Shen ◽  
Xiao Pan ◽  
Luonan Chang

Online autonomous perception of pantograph catenary system status is of great significance for railway autonomous operation and maintenance (RIOM). Image sensors combined with an image processing algorithm can realize the automatic acquisition of the pantograph catenary condition; however, it is difficult to meet the demand of long-term stable condition acquisition, which restricts the implementation of online contact state feedback and the realization of railway automation. This paper proposes an online intelligent perception of the pantograph and catenary system (PCS) status based on parameter adaptation to realize fast and stable state analysis when the train is in long-term operation outdoors. First, according to the feature of the contact point, we used histogram of gradient (HoG) features and one-dimensional signal combined with a KCF tracker as the baseline method. Then, a result discriminator located by L1 and hash similarity constraints was used to construct a closed-loop parameter adaptive localization framework, which retrieves and updates parameters when tracking failure occurs. After that, a pruned RefineDet method was used to detect pantograph horns and sparks, which, together with the contact points localization method, ensure the long-term stability of feature localization in PCS images. Then, based on the stereo cameras model, the three-dimensional trajectory of the whole pantograph body can be reconstructed by the image features, and we obtained pantograph catenary contact parameters including the pantograph slide posture, contact line offset, arc detection, separation detection, etc. Our method has been tested on more than 16,000 collected image pairs and the results show that the proposed method has a better positioning effect than the state-of-art method, and realizes the online acquisition of pantograph catenary contact state, representing a significant contribution to RIOM.


Author(s):  
Stephen L. Wiedmann ◽  
Robert H. Sturges

Abstract This work concentrates on a common assembly primitive, threaded fastener insertion, in an effort to determine the nature of contact between a bolt and nut during thread mating. Contact state models were created to constrain the motion of the bolt at 1 and 2-point contacts. By analyzing the depth of intersection of the bolt into the nut as well as the vertical movement of the origin of the bolt reference frame, we determined that there are three types of contacts states present: unstable two-point, quasi-stable two-point, stable three point. Though the unstable case remains to be deciphered, the parametric equations derived in this work can be used without modification to create a full spectrum of maps at any point in the history of a threaded assembly problem. We investigated 81 potential orientations, each of which has its own set of contact points. From this exhaustive examination, we are capable of detailing a contact state history and, from this, have the potential to develop a constraint network.


2006 ◽  
Vol 23 (7) ◽  
pp. 749-770 ◽  
Author(s):  
Dawei Zhao ◽  
Erfan G. Nezami ◽  
Youssef M.A. Hashash ◽  
Jamshid Ghaboussi

PurposeDevelop a new three‐dimensional discrete element code (BLOKS3D) for efficient simulation of polyhedral particles of any size. The paper describes efficient algorithms for the most important ingredients of a discrete element code.Design/methodology/approachNew algorithms are presented for contact resolution and detection (including neighbor search and contact detection sections), contact point and force detection, and contact damping. In contact resolution and detection, a new neighbor search algorithm called TLS is described. Each contact is modeled with multiple contact points. A non‐linear force‐displacement relationship is suggested for contact force calculation and a dual‐criterion is employed for contact damping. The performance of the algorithm is compared to those currently available in the literature.FindingsThe algorithms are proven to significantly improve the analysis speed. A series of examples are presented to demonstrate and evaluate the performance of the proposed algorithms and the overall discrete element method (DEM) code.Originality/valueLong computational times required to simulate large numbers of particles have been a major hindering factor in extensive application of DEM in many engineering applications. This paper describes an effort to enhance the available algorithms and further the engineering application of DEM.


Author(s):  
Lindsey L. Reader ◽  
David R. Carrier ◽  
Franz Goller ◽  
Michael R. Isaacs ◽  
Alexis Moore Crisp ◽  
...  

During vertical climbing, the gravitational moment tends to pitch the animal's head away from the climbing surface and this may be countered by 1) applying a correcting torque at a discrete contact point, or 2) applying opposing horizontal forces at separate contact points to produce a free moment. We tested these potential strategies in small parrots with an experimental climbing apparatus imitating the fine branches and vines of their natural habitat. The birds climbed on a vertical ladder with four instrumented rungs that measured three-dimensional force and torque, representing the first measurements of multiple contacts from a climbing bird. The parrots ascend primarily by pulling themselves upward using the beak and feet. They resist the gravitational pitching moment with a free moment produced by horizontal force couples between the beak and feet during the first third of the stride and the tail and feet during the last third of the stride. The reaction torque from individual rungs did not counter, but exacerbated the gravitational pitching moment, which was countered entirely by the free moment. Possible climbing limitations were explored using two different rung radii, each with low and high friction surfaces. Rung torque was limited in the large-radius, low-friction condition, however, rung condition did not significantly influence free moments produced. These findings have implications for our understanding of avian locomotor modules (i.e., coordinated actions of the head-neck, hindlimbs, and tail), the use of force couples in vertical locomotion, and the evolution of associated structures.


Author(s):  
Javier F Aceituno ◽  
Pu Wang ◽  
Liang Wang ◽  
Ahmed A Shabana

The aim of this paper is to study the influence of rail flexibility when a wheel/rail wear prediction model that computes the material loss based on an energy approach is used. The wheel/rail wear model used in this investigation is a simplified combined wear hypothesis that is based on the frictional energy loss in the contact patch. In order to account for wear and its distribution in a profiled wheel surface, the contact forces, creepages and location of the wheel/rail contact points are first calculated using a fully nonlinear multibody system (MBS) and three-dimensional contact formulations that account for the rail flexibility. The contact forces, creepages and contact point locations are defined as nonlinear functions of the rail deformations. These nonlinear expressions are used in the wear calculations. The wear distribution is considered to be proportional to the normal force in the contact area. Numerical simulations are first performed in order to compare between the results obtained using the simplified wheel/rail wear model and the results obtained using Archard’s wear model with a focus on sliding when the track is modeled as a rigid body. This simplified wear model is then used in the simulation of the MBS vehicle model in the case of a flexible body track, in which the rails are modeled using the finite element floating frame of reference approach and modal reduction techniques. The effect of the rail deformation on the wear results are examined by comparing these results with those obtained using the rigid-body track model.


2020 ◽  
Author(s):  
Lucie A. Huet ◽  
Hannah M. Emnett ◽  
Mitra J. Z. Hartmann

AbstractThe rodent vibrissal (whisker) system has been studied for decades as a model of active touch sensing. There are no sensors along the length of a whisker; all sensing occurs at the whisker base. Therefore, a large open question in many neuroscience studies is how an animal could estimate the three-dimensional location at which a whisker makes contact with an object. In the present work we simulated the exact shape of a real rat whisker to demonstrate the existence of a unique mapping from triplets of mechanical signals at the whisker base to the three-dimensional whisker-object contact point. We then used high speed video to record whisker deflections as an awake rat whisked against a peg and used the mechanics resulting from those deflections to extract the contact points along the peg surface. A video shows the contour of the peg gradually emerging during active whisking behavior.


1999 ◽  
Vol 121 (3) ◽  
pp. 418-424 ◽  
Author(s):  
Tsuneo Yoshikawa

This paper provides a unified theoretical framework for analytical characterization of grasping and manipulation capability of robotic grippers and hands as well as fixing capability of fixtures and vises. The concept of passive closure and active closure for general constraining mechanisms consisting of fixed and/or articulated constraining limbs is introduced. These concepts are useful for explicitly distinguishing the two kinds of capabilities of the constraining mechanism: Passive closure represents the ability of fixing devices and active closure represents the ability of manipulating devices. Passive closure is further classified into passive form closure and passive force closure. Passive form closure is essentially the same as Reuleaux’s classical form closure and passive force closure is a substantial generalization of classical force closure to the case where articulated constraining limbs exist. Conditions for these closures to hold are studied. After a brief review of conditions for passive form closure, several conditions for passive force closure are given. One outcome is that, under the assumption that the contact points are frictionless and the active contact points are independent, for the existence of passive force closure there must be at least six (three) fixed contact points and one active contact point in the case of three-dimensional (two-dimensional, respectively) space. Finally, a necessary and sufficient condition for active closure is given for the case of frictional point contacts by constraining limbs with enough degrees-of-freedom. This condition consists of a general positioning condition of contact points and the existence condition of nonzero internal force. This condition has a quite natural physical interpretation.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2021 ◽  
pp. 146808742110080
Author(s):  
Jamshid Malekmohammadi Nouri ◽  
Ioannis Vasilakos ◽  
Youyou Yan

A new engine block with optical access has been designed and manufactured capable of running up to 3000 r/min with the same specification as the unmodified engine. The optical window allowed access to the full length of the liner over a width of 25 mm to investigate the lubricant flow and cavitation at contact point between the rings and cylinder-liner. In addition, it allowed good access into the combustion chamber to allow charged flow, spray and combustion visualisation and measurements using different optical methods. New custom engine management system with build in LabView allowed for the precise full control of the engine. The design of the new optical engine was a great success in producing high quality images of lubricant flow, cavitation formation and development at contact point at different engine speeds ranging from 208 to 3000 r/min and lubricant temperatures (30°C–70°C) using a high-speed camera. The results under motorised operation confirmed that there was no cavitation at contact points during the intake/exhaust strokes due to low in-cylinder presure, while during compression/expansion strokes, with high in-cylinder pressure, considerable cavities were observed, in particular, during the compression stroke. Lubricant temperatures had the effect of promoting cavities both in their intensity and covered ring area up to 50°C as expected. Beyond that, although the cavitation intensity increases further with temperature, its area reduces due to possible collapse of the cavitating bubbles at higher temperature. The change of engine speed from 208 to 800 r/min increased cavitating area considerably by 52% of the ring area and was further increased by 19% at 1000 r/min. After that, the results showed very small increase in cavitation area (1.3% at 2000 r/min) with similar intensity and distribution across the ring.


Sign in / Sign up

Export Citation Format

Share Document