Comparison of Elasticity of Human Tendon and Aponeurosis in Knee Extensors and Ankle Plantar Flexors in Vivo

2005 ◽  
Vol 21 (2) ◽  
pp. 129-142 ◽  
Author(s):  
Keitaro Kubo ◽  
Hiroaki Kanehisa ◽  
Tetsuo Fukunaga

The purposes of this study were to compare the elasticity of tendon and aponeurosis in human knee extensors and ankle plantar flexors in vivo and to examine whether the maximal strain of tendon was correlated to that of aponeurosis. The elongation of tendon and aponeurosis during isometric knee extension (n= 23) and ankle plantar flexion (n= 22), respectively, were determined using a real-time ultrasonic apparatus, while the participants performed ramp isometric contractions up to voluntary maximum. To calculate the strain values from the measured elongation, we measured the respective length of tendon and aponeurosis. For the knee extensors, the maximal strain of aponeurosis (12.1 ± 2.8%) was significantly greater than that of the patella tendon (8.3 ± 2.4%),p< 0.001. On the contrary, the maximal strain of Achilles tendon (5.9 ± 1.4%) was significantly greater than that of aponeurosis in ankle plantar flexors (2.7 ± 1.4%),p< 0.001. Furthermore, for both knee extensors and ankle plantar flexors there was no significant correlation between maximal strain of tendon and aponeurosis. These results would be important for understanding the different roles of tendon and aponeurosis during human movements and for more accurate muscle modeling.

2010 ◽  
Vol 26 (3) ◽  
pp. 316-323 ◽  
Author(s):  
Keitaro Kubo ◽  
Toshihiro Ikebukuro ◽  
Hideaki Yata ◽  
Naoya Tsunoda ◽  
Hiroaki Kanehisa

The purpose of this study was to compare the effects of resistance training on muscle and tendon properties between knee extensors and plantar flexors in vivo. Twenty healthy young men voluntarily participated in this study. The subjects were randomly divided into two training groups: knee extension group (n= 10) and plantar flexion group (n= 10). They performed five sets of exercises with a 1-min rest between sets, which consisted of unilateral knee extension for the knee extension group and plantar flexion for the plantar flexion group at 80% of 1 repetition maximum with 10 repetitions per set (4 days/wk, 12 wk). Before and after training, muscle strength, neural activation level (by interpolated twitch), muscle volume (by magnetic resonance imaging), and tendon stiffness (by ultrasonography) were measured. There were no differences in the training-induced increases in muscle strength, activation level, muscle volume, and tendon stiffness between knee extensors and plantar flexors. These results suggested that if the used protocol of training (i.e., intensity, repetition, etc.) were the same, there were no differences in the training-induced changes in muscle and tendon properties between knee extensors and plantar flexors.


2011 ◽  
Vol 27 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Joshua T. Weinhandl ◽  
Jeremy D. Smith ◽  
Eric L. Dugan

The purpose of the study was to investigate the effects of fatigue on lower extremity joint kinematics, and kinetics during repetitive drop jumps. Twelve recreationally active males (n= 6) and females (n= 6) (nine used for analysis) performed repetitive drop jumps until they could no longer reach 80% of their initial drop jump height. Kinematic and kinetic variables were assessed during the impact phase (100 ms) of all jumps. Fatigued landings were performed with increased knee extension, and ankle plantar flexion at initial contact, as well as increased ankle range of motion during the impact phase. Fatigue also resulted in increased peak ankle power absorption and increased energy absorption at the ankle. This was accompanied by an approximately equal reduction in energy absorption at the knee. While the knee extensors were the muscle group primarily responsible for absorbing the impact, individuals compensated for increased knee extension when fatigued by an increased use of the ankle plantar flexors to help absorb the forces during impact. Thus, as fatigue set in and individuals landed with more extended lower extremities, they adopted a landing strategy that shifted a greater burden to the ankle for absorbing the kinetic energy of the impact.


1981 ◽  
Vol 51 (3) ◽  
pp. 750-754 ◽  
Author(s):  
V. J. Caiozzo ◽  
J. J. Perrine ◽  
V. R. Edgerton

Seventeen male and female subjects (ages 20–38 yr) were tested pre- and posttraining for maximal knee extension torque at seven specific velocities (0, 0.84, 1.68, 2.51, 3.35, 4.19, and 5.03 rad . s-1) with an isokinetic dynamometer. Maximal knee extension torques were recorded at a specific joint angle (0.52 rad below the horizontal plane) for all test speeds. Subjects were randomly assigned to one of three experimental groups: group A, control, n = 7; group B, training at 1.68 rad . s-1, n = 5; or group C, training at 4.19 rad . s-1, n = 5. Subjects trained the knee extensors by performing two sets of 10 single maximal voluntary efforts three times a week for 4 wk. Before training, each training group exhibited a leveling-off of muscular tension in the slow velocity-high force region of the in vivo force-velocity relationship. Training at 1.68 rad . s-1 resulted in significant (P less than 0.05) improvements at all velocities except for 5.03 rad . s-1 and markedly affected the leveling-off in the slow velocity-high force region. Training at 4.19 rad . s-1 did not affect the leveling-off phenomenon but brought about significant improvements (P less than 0.05) at velocities of 2.51, 3.35, and 4.19 rad . s-1. The changes seen in the leveling-off phenomenon suggest that training at 1.68 rad . s-1 might have brought about an enhancement of motoneuron activation.


2001 ◽  
Vol 90 (5) ◽  
pp. 1671-1678 ◽  
Author(s):  
Tadashi Muramatsu ◽  
Tetsuro Muraoka ◽  
Daisuke Takeshita ◽  
Yasuo Kawakami ◽  
Yuichi Hirano ◽  
...  

Load-strain characteristics of tendinous tissues (Achilles tendon and aponeurosis) were determined in vivo for human medial gastrocnemius (MG) muscle. Seven male subjects exerted isometric plantar flexion torque while the elongation of tendinous tissues of MG was determined from the tendinous movements by using ultrasonography. The maximal strain of the Achilles tendon and aponeurosis, estimated separately from the elongation data, was 5.1 ± 1.1 and 5.9 ± 1.6%, respectively. There was no significant difference in strain between the Achilles tendon and aponeurosis. In addition, no significant difference in strain was observed between the proximal and distal regions of the aponeurosis. The results indicate that tendinous tissues of the MG are homogenously stretched along their lengths by muscle contraction, which has functional implications for the operation of the human MG muscle-tendon unit in vivo.


2006 ◽  
Vol 77 (4) ◽  
pp. 408-416 ◽  
Author(s):  
Keitaro Kubo ◽  
Kazuya Ohgo ◽  
Ryuichi Takeishi ◽  
Kazunari Yoshinaga ◽  
Naoya Tsunoda ◽  
...  

2019 ◽  
pp. 1-14 ◽  
Author(s):  
Masahiro Kouno ◽  
Tomonobu Ishigaki ◽  
Toshihiro Ikebukuro ◽  
Hideaki Yata ◽  
Keitaro Kubo

2008 ◽  
Vol 5 (2) ◽  
pp. 59-63
Author(s):  
Hsin-Yi Liu ◽  
Michelle Boling ◽  
Darin Padua ◽  
R. Alexander Creighton ◽  
Paul Weinhold

The objective of this study was to utilise an ultrasonic technique to assess the effect of patellofemoral pain syndrome (PFPS) on the mechanical properties of the patellar tendon. Seven subjects with PFPS and seven matched control subjects volunteered to participate in this study. Subjects were asked to perform isometric maximal voluntary contractions of the knee extensors while their knee extension torque was monitored and the displacement of the patellar tendon was recorded with an ultrasonic system. Our results showed significantly lower tendon stiffness (by ∼30%) in the PFPS subjects. Although tendon secant modulus was lower by 34% in the PFPS subjects, the difference was not statistically significant. Therefore, we conclude that the ultrasonic technique was able to detect a decrease in the structural stiffness of the patellar tendon associated with PFPS. The decrease in tendon stiffness was moderately correlated with the length of symptoms in these individuals.


2019 ◽  
Vol 66 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Amine Ghram ◽  
James D Young ◽  
Rahman Soori ◽  
David G Behm

Abstract The purpose of this study was to compare the effects of unilateral ankle fatigue versus the knee muscles with and without vision on bipedal postural control. Elite judo athletes who competed at the national level with at least 10 years of training experience, were randomised into KNEE (n = 10; 20 ± 2 years) and ANKLE (n = 9; 20 ± 3 years) groups, who performed dynamic isokinetic fatiguing contractions (force decreased to 50% of initial peak torque for three consecutive movements) of the knee flexors and extensors or ankle dorsiflexors and plantar flexors, respectively. Static bipedal postural control (French Posturology Association normative standards) with eyes open and eyes closed was examined before and immediately after the fatiguing task. Postural variables examined were the centre of pressure (CoP) sway in the medio-lateral and antero-posterior directions, total CoP area sway and CoP sway velocity. Although unilateral ankle and knee fatigue adversely affected all bipedal postural measures, with greater disturbances with eyes closed, there were no significant main group or interaction effects between KNEE and ANKLE groups. Unilateral lower limb fatigue adversely affected bipedal balance, with knee extension/flexion fatigue affecting bipedal postural control to a similar extent as unilateral ankle dorsiflexion/plantar flexion fatigue. Hence unilateral fatigue can affect subsequent bilateral performance or also have implications for rehabilitation exercise techniques. Our findings may be limited to judo athletes as other populations were not tested.


2015 ◽  
Vol 118 (10) ◽  
pp. 1193-1199 ◽  
Author(s):  
Brent J. Raiteri ◽  
Andrew G. Cresswell ◽  
Glen A. Lichtwark

Because of the approximate linear relationship between muscle force and muscle activity, muscle forces are often estimated during maximal voluntary isometric contractions (MVICs) from torque and surface electromyography (sEMG) measurements. However, sEMG recordings from a target muscle may contain cross-talk originating from nearby muscles, which could lead to erroneous force estimates. Here we used ultrasound imaging to measure in vivo muscle fascicle length ( Lf) changes and sEMG to measure muscle activity of the tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and soleus muscles during ramp MVICs in plantar and dorsiflexion directions ( n = 8). After correcting longitudinal Lfchanges for ankle rotation, the antagonist Lfat peak antagonist root-mean-square (RMS) amplitude were significantly longer than the agonist Lfat this sEMG-matched level. On average, Lfshortened from resting length by 1.29 to 2.90 mm when muscles acted as agonists and lengthened from resting length by 0.43 to 1.16 mm when muscles acted as antagonists (depending on the muscle of interest). The lack of fascicle shortening when muscles acted as antagonists indicates that cocontraction was likely to be negligible, despite cocontraction as determined by sEMG of between 7 and 23% MVIC across all muscles. Different interelectrode distances (IEDs) over the plantar flexors revealed significantly higher antagonist RMS amplitudes for the 4-cm IEDs compared with the 2-cm IEDs, which further indicates that cross-talk was present. Consequently, investigators should be wary about performing agonist torque corrections for isometric plantar flexion and dorsiflexion based on the antagonist sEMG trace and predicted antagonist moment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahdis Dadfar ◽  
M. Soltani ◽  
Mohammadreza Basohbat Novinzad ◽  
Kaamran Raahemifar

AbstractDynamic knee valgus (DKV) malalignment affects the biomechanical characteristic during sports activities. This cross-sectional study was conducted to evaluate mechanical energy absorption (MEA) strategies at initial contact (IC) and total landing (TL) phases during single-leg landing (SLL), and double-leg landing (DLL). Twenty-eight female athletes with DKV (age 10–14) were invited. MEA analysis of lower extremity joints was done in sagittal and frontal motion planes employing 8 Vicon motion capture cameras and 2 Kistler force plates. Statistical analysis was done using IBM Statistics (version24) by Bivariate Pearson Correlation Coefficient test. Knee extensors MEA during SLL (IC: P = 0.008, R = 0.522/TL: P < 0.001, R = 0.642) and DLL (IC: P < 0.001, R = 0.611/TL: P = 0.011, R = 0.525), and knee abductors during SLL (IC: P = 0.021, R = 0.474) were positively correlated with increased DKV angle. Ankle plantar flexors during SLL (TL: P = 0.017, R = − 0.477) and DLL (TL: P = 0.028, R = − 0.404), and hip extensors during SLL (TL: P = 0.006, R = − 0.5120) were negatively correlated with increased DKV angle. Compensated MEA in knee extensors was correlated with less ankle plantar flexion MEA during SLL (IC: P = 0.027, R = − 0.514/TL: P = 0.007, R = − 0.637) and DLL (IC: P = 0.033, R = − 00.412/TL: P = 0.025, R = − 0.485). These outcomes indicated a knee-reliant MEA strategy in female athletes with DKV during puberty, putting them at higher risks of ACL injuries during landing.


Sign in / Sign up

Export Citation Format

Share Document