Modeling the Functional Effects of Allosteric Modulators at Pharmacological Receptors: An Extension of the Two-State Model of Receptor Activation

2000 ◽  
Vol 58 (6) ◽  
pp. 1412-1423 ◽  
Author(s):  
David A. Hall
2019 ◽  
Vol 19 (24) ◽  
pp. 2239-2253 ◽  
Author(s):  
Paul J. Goldsmith

The N-methyl-D-aspartate receptor (NMDAR) is a member of the ionotropic glutamate receptor (iGluR) family that plays a crucial role in brain signalling and development. NMDARs are nonselective cation channels that are involved with the propagation of excitatory neurotransmission signals with important effects on synaptic plasticity. NMDARs are functionally and structurally complex receptors, they exist as a family of subtypes each with its own unique pharmacological properties. Their implication in a variety of neurological and psychiatric conditions means they have been a focus of research for many decades. Disruption of NMDAR-related signalling is known to adversely affect higherorder cognitive functions (e.g. learning and memory) and the search for molecules that can recover (or even enhance) receptor output is a current strategy for CNS drug discovery. A number of positive allosteric modulators (PAMs) that specifically attempt to overcome NMDAR hypofunction have been discovered. They include various chemotypes that have been found to bind to several different binding sites within the receptor. The heterogeneity of chemotype, binding site and NMDAR subtype provide a broad landscape of ongoing opportunities to uncover new features of NMDAR pharmacology. Research on NMDARs continues to provide novel mechanistic insights into receptor activation and this review will provide a high-level overview of the research area and discuss the various chemical classes of PAMs discovered so far.


1989 ◽  
Vol 54 (2) ◽  
pp. 536-543 ◽  
Author(s):  
Josef Chmelík ◽  
Pavel Anzenbacher ◽  
Vítěz Kalous

The renaturation of the two main components of human serum albumin, i.e. of mercaptalbumin and nonmercaptalbumin, was studied polarographically. It has been demonstrated that renaturation of both proteins after 1-min denaturation in 8M urea is reversible. By contrast, renaturation after 200 min denaturation in 8M urea is an irreversible process; the characteristics of renatured mercaptalbumin differ more from the properties of the native protein than the characteristics of nonmercaptalbumin. The studies of the kinetics of renaturation of both proteins have shown that the renaturation can be represented by a two-state model. This means that the existence of stable intermediary products during the renaturation process was not determined polarographically.


1984 ◽  
Vol 176 (3) ◽  
pp. 349-367 ◽  
Author(s):  
Sho Asakura ◽  
Hajime Honda
Keyword(s):  

Author(s):  
David I. Rosenbaum ◽  
Kalana Jayanetti

Abstract Do traditional two-state worklife estimates need adjustment for unemployment? To answer, an augmented three-state model classifies individuals as either 1) employed; 2) unemployed; or 3) inactive but not marginally attached. Periods of unemployment may reduce worklives; however, removal of those marginally attached or discouraged from the inactive state raises worklives. The three-state model results are compared to worklife estimates from the same initial data using the traditional two-state model. Results show that in many cases, the two-state model results are a good proxy for the three-state results that control for unemployment.


Sign in / Sign up

Export Citation Format

Share Document