scholarly journals A 15N-Poor Isotopic Composition for the Solar System As Shown by Genesis Solar Wind Samples

Science ◽  
2011 ◽  
Vol 332 (6037) ◽  
pp. 1533-1536 ◽  
Author(s):  
B. Marty ◽  
M. Chaussidon ◽  
R. C. Wiens ◽  
A. J. G. Jurewicz ◽  
D. S. Burnett
Author(s):  
Rachel L. Klima ◽  
Noah E. Petro

Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar-wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH − or H 2 O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH − /H 2 O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH − /H 2 O absorption band strengths that differ from their immediate surroundings. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


2021 ◽  
Author(s):  
Kathleen Mandt ◽  
Olivier Mousis ◽  
Jonathan Lunine ◽  
Bernard Marty ◽  
Thomas Smith ◽  
...  

<p>The current composition of giant planet atmospheres provides information on how such planets formed, and on the origin of the solid building blocks that contributed to their formation. Noble gas abundances and their isotope ratios are among the most valuable pieces of evidence for tracing the origin of the materials from which the giant planets formed. In this review we first outline the current state of knowledge for heavy element abundances in the giant planets and explain what is currently understood about the reservoirs of icy building blocks that could have contributed to the formation of the Ice Giants. We then outline how noble gas isotope ratios have provided details on the original sources of noble gases in various materials throughout the solar system. We follow this with a discussion on how noble gases are trapped in ice and rock that later became the building blocks for the giant planets and how the heavy element abundances could have been locally enriched in the protosolar nebula. We then provide a review of the current state of knowledge of noble gas abundances and isotope ratios in various solar system reservoirs, and discuss measurements needed to understand the origin of the ice giants. Finally, we outline how formation and interior evolution will influence the noble gas abundances and isotope ratios observed in the ice giants today. Measurements that a future atmospheric probe will need to make include (1) the <sup>3</sup>He/<sup>4</sup>He isotope ratio to help constrain the protosolar D/H and <sup>3</sup>He/<sup>4</sup>He; (2) the <sup>20</sup>Ne/<sup>22</sup>Ne and <sup>21</sup>Ne/<sup>22</sup>Ne to separate primordial noble gas reservoirs similar to the approach used in studying meteorites; (3) the Kr/Ar and Xe/Ar to determine if the building blocks were Jupiter-like or similar to 67P/C-G and Chondrites; (4) the krypton isotope ratios for the first giant planet observations of these isotopes; and (5) the xenon isotopes for comparison with the wide range of values represented by solar system reservoirs.</p><p>Mandt, K. E., Mousis, O., Lunine, J., Marty, B., Smith, T., Luspay-Kuti, A., & Aguichine, A. (2020). Tracing the origins of the ice giants through noble gas isotopic composition. Space Science Reviews, 216(5), 1-37.</p>


1995 ◽  
pp. 61-64
Author(s):  
R. Bodmer ◽  
P. Bochsler ◽  
J. Geiss ◽  
R. Von Steiger ◽  
G. Gloeckler

1971 ◽  
Vol 10 (2) ◽  
pp. 199-216 ◽  
Author(s):  
F.A. Podosek ◽  
J.C. Huneke ◽  
D.S. Burnett ◽  
G.J. Wasserburg

2010 ◽  
Vol 9 (2) ◽  
pp. 89-99 ◽  
Author(s):  
Brooks L. Harrop ◽  
Dirk Schulze-Makuch

AbstractThe search for Dyson Spheres has been propelled not only by the hope of discovering intelligent alien life, but by humanity's ever-increasing need for energy. However, the Dyson Sphere is not a practical design, requiring too much matter to build and too much energy to stabilize. Here we discuss the various designs of a Dyson Sphere and propose the Solar Wind Power (SWP) Satellite, a simplistic, self-sustaining system that draws power from the solar wind and uses a laser to fire energy to collectors (on space stations, bases, etc.) positioned anywhere in the Solar System. While a small SWP Satellite can provide an estimated 2 MW of power, larger (or networks of) satellites could provide terawatts of power or more. The cost of the SWP Satellite would be relatively cheap – it primarily consists of shaped copper, with only a few complex systems onboard. Detection of such a satellite would be difficult using current technology, because at this time we can only detect solar wind deviations of up to 10−13 MS yr−1, while a 2 MW satellite would only divert 10−34 MS yr−1. Thus, only very large SWP Satellites could possibly be detected.


1997 ◽  
Vol 474 (1) ◽  
pp. L69-L72 ◽  
Author(s):  
M. Oetliker ◽  
D. Hovestadt ◽  
B. Klecker ◽  
M. R. Collier ◽  
G. Gloeckler ◽  
...  

1992 ◽  
Vol 150 ◽  
pp. 425-426
Author(s):  
Raphael Steinitz ◽  
Estelle Kunoff

Chemical abundances in the solar corona or solar wind compared to those in the photosphere differentiate according to first ionization potential (FIP). We suggest that the effect is the result of diamagnetic diffusion pumps operating in the presence of gravitation and diverging magnetic structures. We then comment briefly on implications concerning abundances in the solar system and chemically peculiar stars.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1673
Author(s):  
Ching-Ming Lai ◽  
Jean-Fu Kiang

The magnetospheric responses to solar wind of Mercury, Earth, Jupiter and Uranus are compared via magnetohydrodynamic (MHD) simulations. The tilt angle of each planetary field and the polarity of solar wind are also considered. Magnetic reconnection is illustrated and explicated with the interaction between the magnetic field distributions of the solar wind and the magnetosphere.


Sign in / Sign up

Export Citation Format

Share Document