scholarly journals Note on the Magnetic Field Due to an Electric Current in a Straight Wire

Science ◽  
1907 ◽  
Vol 26 (665) ◽  
pp. 417-418
Author(s):  
W. J. Humphreys
2018 ◽  
Vol 177 ◽  
pp. 08004
Author(s):  
Łukasz Tomków

The model of a single Nuclotron-type cable is presented. The goal of this model is to assess the behaviour of the cable under different loads. Two meshes with different simplifications are applied. In the first case, the superconductor in the cable is modelled as single region. Second mesh considers individual strands of the cable. The significant differences between the distributions of the electric current density obtained with both models are observed. The magnetic field remains roughly similar.


The distortion of the lines of flow of an electric current in a thin metal plate by the action of a magnetic field was discovered in 1879. Hall attributed this to the action of the magnetic field on the molecular currents in the metal film, which were deflected to one side or the other and accompanied by a corresponding twist of the equipotential lines. This explanation did not pass without criticism, and another theory of the effect found by Hall was published in 1884. In that paper the author seeks to explain the effect by assuming a combination of certain mechanical strains and Peltier effects, a thermo-electric current being set up between the strained and the unstrained portions. The effect of such strain was to produce a reverse effect in some metals, and these were precisely the metals for which the Hall effect was found to reverse. Aluminium was the only exception. In other respects, however, as shown by Hall in a later paper, Bidwell's theory did not stand the test of experiment, and the results lend no support to his theory, while they are in complete accordance withe the explanation that the molecular currents are disturbed by the action of the magnetic field. On the electron theory of metallic conduction, the mechanism of the Hall effect is more obvious, but at present no satisfactory explanation of the reversal found in some metals is known. Further experiments have made it clear that there is a real deflection of the elementary currents, due to the application of the magnetic field, independent of any effect due to strain.


1972 ◽  
Vol 55 (1) ◽  
pp. 105-112
Author(s):  
C. Sozou

The equilibrium configuration of a slowly rotating self-gravitating perfectly conducting inviscid liquid, in the presence of a small poloidal magnetic field, is considered for a case where the electric current is a simple function of the distance from the axis of rotation. Owing to the coupling of the magnetic field with the rotation the electric current may reverse direction. This could make the magnetic field zero on certain surfaces and impose restrictions on the parameters of the problem. A perturbation expansion of the nearly spherical surface of the liquid is constructed.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1653
Author(s):  
Huaijiu Deng ◽  
Jian Dong ◽  
Filippo Boi ◽  
Theo Saunders ◽  
Chunfeng Hu ◽  
...  

In the past decade, a renewed interest on electromagnetic processing of materials has motivated several investigations on the interaction between matter, electric and magnetic fields. These effects are primarily reconducted to the Joule heating and very little attention has been dedicated to the magnetic field contributions. The magnetic field generated during electric current-assisted sintering has not been widely investigated. Magnetism could have significant effects on sintering as it generates significant magnetic forces, resulting in inductive electrical loads and preferential heating induced by overlapping magnetic fields (i.e., proximity effect). This work summarizes the magnetic field effects in electric current-assisted processing; it focuses on health and safety issues associated with large currents (up to 0.4 MA); using FEM simulations, it computes the self-generated magnetic field during spark plasma sintering (SPS) to consolidate materials with variable magnetic permeability; and it quantifies the Lorentz force acting at interparticle contact points. The results encourage one to pay more attention to magnetic field-related effects in order to engineer and exploit their potentials.


2012 ◽  
Vol 1407 ◽  
Author(s):  
Elena Cimpoiasu ◽  
David Lashmore ◽  
Brian White ◽  
George A. Levin

ABSTRACTWe performed magnetoresistance (MR) measurements on bulk carbon nanotube sheets that had been partially aligned by post-fabrication stretching. The magnetic field was applied under different orientations with respect to the direction of the stretch, while the electric current was either parallel or perpendicular to the direction of the stretch. We found that the fielddependence of the MR is composed of two terms, one positive and one negative. The magnitudes of both terms are largest when the field is parallel with the direction of the stretch. If the sheets are treated with nitric acid, the positive term is removed and the MR is smallest when the field is aligned with the magnetic field. We attribute these anisotropic features to magnetoelastic effects induced by the coupling between the magnetic catalyst nanoparticles, the magnetic field, and the network of nanotubes.


2020 ◽  
Vol 5 (2) ◽  
pp. 119-128
Author(s):  
Cherly Salawane ◽  
Supriyadi Supriyadi ◽  
Ronaldo Talapessy ◽  
Mirtha Yunitha Sari Risakotta

The value of the gravitational acceleration of the earth above the earth’s surface depends on the position of the latitude and longitude of the earth’s surface, in other words, because the shape of the earth’s surface is not round like a ball. The magnitude of gravity is not the same everywhere on the surface of the earth. The purpose of this study is to analyze the value of the earth’s gravitational acceleration in a laboratory using a current balance with a graphical method. Fluctuations in the value of the magnetic field strength (B) and the value of the electric current strength (i) on the current balance cause the value of laboratory gravitational acceleration (glab) to vary in the transfer of electric charge (q) according to coil type. The magnitude of the earth’s gravitational acceleration value obtained in a laboratory with a current balance for each type of coil is as follows: SF-37 glab-nr=9.89 m/s2, SF-38 glab-nr=9.90 m/s2, SF-39 glab-nr=9.76 m/s2, SF-40 glab-nr=9.95 m/s2, SF-41 glab-nr=9.75 m/s2 dan SF-42 glab-nr=9.93 m/s2. The results obtained indicate that the value of the earth’s gravitational acceleration in a laboratory close to the literature value is the value of the glab-nr in the SF-37 coil type of 9.89 m/s2.


Sign in / Sign up

Export Citation Format

Share Document