scholarly journals In Vitro Resistance Selection and In Vivo Efficacy of Morpholino Oligomers against West Nile Virus

2007 ◽  
Vol 51 (7) ◽  
pp. 2470-2482 ◽  
Author(s):  
Tia S. Deas ◽  
Corey J. Bennett ◽  
Susan A. Jones ◽  
Mark Tilgner ◽  
Ping Ren ◽  
...  

ABSTRACT We characterize in vitro resistance to and demonstrate the in vivo efficacy of two antisense phosphorodiamidate morpholino oligomers (PMOs) against West Nile virus (WNV). Both PMOs were conjugated with an Arg-rich peptide. One peptide-conjugated PMO (PPMO) binds to the 5′ terminus of the viral genome (5′-end PPMO); the other targets an essential 3′ RNA element required for genome cyclization (3′ conserved sequence I [3′ CSI] PPMO). The 3′ CSI PPMO displayed a broad spectrum of antiflavivirus activity, suppressing WNV, Japanese encephalitis virus, and St. Louis encephalitis virus, as demonstrated by reductions in viral titers of 3 to 5 logs in cell cultures, likely due to the absolute conservation of the 3′ CSI PPMO-targeted sequences among these viruses. The selection and sequencing of PPMO-resistant WNV showed that the 5′-end-PPMO-resistant viruses contained two to three mismatches within the PPMO-binding site whereas the 3′ CSI PPMO-resistant viruses accumulated mutations outside the PPMO-targeted region. The mutagenesis of a WNV infectious clone demonstrated that the mismatches within the PPMO-binding site were responsible for the 5′-end PPMO resistance. In contrast, a U insertion or a G deletion located within the 3′-terminal stem-loop of the viral genome was the determinant of the 3′ CSI PPMO resistance. In a mouse model, both the 5′-end and 3′ CSI PPMOs (administered at 100 or 200 μg/day) partially protected mice from WNV disease, with minimal to no PPMO-mediated toxicity. A higher treatment dose (300 μg/day) caused toxicity. Unconjugated PMOs (3 mg/day) showed neither efficacy nor toxicity, suggesting the importance of the peptide conjugate for efficacy. The results suggest that a modification of the peptide conjugate composition to reduce its toxicity yet maintain its ability to effectively deliver PMO into cells may improve PMO-mediated therapy.

2014 ◽  
Vol 159 (11) ◽  
pp. 3113-3118 ◽  
Author(s):  
Katherine L. Hussmann ◽  
Rianna Vandergaast ◽  
Susan Park Ochsner ◽  
Albert C. Huang ◽  
Michael Gale ◽  
...  

2016 ◽  
Vol 90 (9) ◽  
pp. 4757-4770 ◽  
Author(s):  
Alexander J. McAuley ◽  
Maricela Torres ◽  
Jessica A. Plante ◽  
Claire Y.-H. Huang ◽  
Dennis A. Bente ◽  
...  

ABSTRACTFlaviviruses are positive-sense, single-stranded RNA viruses responsible for millions of human infections annually. The envelope (E) protein of flaviviruses comprises three structural domains, of which domain III (EIII) represents a discrete subunit. The EIII gene sequence typically encodes epitopes recognized by virus-specific, potently neutralizing antibodies, and EIII is believed to play a major role in receptor binding. In order to assess potential interactions between EIII and the remainder of the E protein and to assess the effects of EIII sequence substitutions on the antigenicity, growth, and virulence of a representative flavivirus, chimeric viruses were generated using the West Nile virus (WNV) infectious clone, into which EIIIs from nine flaviviruses with various levels of genetic diversity from WNV were substituted. Of the constructs tested, chimeras containing EIIIs from Koutango virus (KOUV), Japanese encephalitis virus (JEV), St. Louis encephalitis virus (SLEV), and Bagaza virus (BAGV) were successfully recovered. Characterization of the chimerasin vitroandin vivorevealed differences in growth and virulence between the viruses, within vivopathogenesis often not being correlated within vitrogrowth. Taken together, the data demonstrate that substitutions of EIII can allow the generation of viable chimeric viruses with significantly altered antigenicity and virulence.IMPORTANCEThe envelope (E) glycoprotein is the major protein present on the surface of flavivirus virions and is responsible for mediating virus binding and entry into target cells. Several viable West Nile virus (WNV) variants with chimeric E proteins in which the putative receptor-binding domain (EIII) sequences of other mosquito-borne flaviviruses were substituted in place of the WNV EIII were recovered, although the substitution of several more divergent EIII sequences was not tolerated. The differences in virulence and tissue tropism observed with the chimeric viruses indicate a significant role for this sequence in determining the pathogenesis of the virus within the mammalian host. Our studies demonstrate that these chimeras are viable and suggest that such recombinant viruses may be useful for investigation of domain-specific antibody responses and the more extensive definition of the contributions of EIII to the tropism and pathogenesis of WNV or other flaviviruses.


2018 ◽  
Vol 12 (10) ◽  
pp. e0006886 ◽  
Author(s):  
Agathe M. G. Colmant ◽  
Sonja Hall-Mendelin ◽  
Scott A. Ritchie ◽  
Helle Bielefeldt-Ohmann ◽  
Jessica J. Harrison ◽  
...  

2009 ◽  
Vol 01 (01) ◽  
pp. 036-042 ◽  
Author(s):  
Tao Duan ◽  
Monique Ferguson ◽  
Lintian Yuan ◽  
Fangling Xu ◽  
Guangyu Li

Virology ◽  
2007 ◽  
Vol 364 (1) ◽  
pp. 184-195 ◽  
Author(s):  
Shannan L. Rossi ◽  
Rafik Fayzulin ◽  
Nathan Dewsbury ◽  
Nigel Bourne ◽  
Peter W. Mason

Virology ◽  
2012 ◽  
Vol 427 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Greta A. Van Slyke ◽  
Alexander T. Ciota ◽  
Graham G. Willsey ◽  
Joachim Jaeger ◽  
Pei-Yong Shi ◽  
...  

2008 ◽  
Vol 82 (17) ◽  
pp. 8465-8475 ◽  
Author(s):  
Stephane Daffis ◽  
Melanie A. Samuel ◽  
Mehul S. Suthar ◽  
Brian C. Keller ◽  
Michael Gale ◽  
...  

ABSTRACT Type I interferon (IFN-α/β) comprises a family of immunomodulatory cytokines that are critical for controlling viral infections. In cell culture, many RNA viruses trigger IFN responses through the binding of RNA recognition molecules (RIG-I, MDA5, and TLR-3) and induction of interferon regulatory factor IRF-3-dependent gene transcription. Recent studies with West Nile virus (WNV) have shown that type I IFN is essential for restricting infection and that a deficiency of IRF-3 results in enhanced lethality. However, IRF-3 was not required for optimal systemic IFN production in vivo or in vitro in macrophages. To begin to define the transcriptional factors that regulate type I IFN after WNV infection, we evaluated IFN induction and virus control in IRF-7−/− mice. Compared to congenic wild-type mice, IRF-7−/− mice showed increased lethality after WNV infection and developed early and elevated WNV burdens in both peripheral and central nervous system tissues. As a correlate, a deficiency of IRF-7 blunted the systemic type I IFN response in mice. Consistent with this, IFN-α gene expression and protein production were reduced and viral titers were increased in IRF-7−/− primary macrophages, fibroblasts, dendritic cells, and cortical neurons. In contrast, in these cells the IFN-β response remained largely intact. Our data suggest that the early protective IFN-α response against WNV occurs through an IRF-7-dependent transcriptional signal.


2007 ◽  
Vol 81 (17) ◽  
pp. 9100-9108 ◽  
Author(s):  
Nigel Bourne ◽  
Frank Scholle ◽  
Maria Carlan Silva ◽  
Shannan L. Rossi ◽  
Nathan Dewsbury ◽  
...  

ABSTRACT Infection of cells with flaviviruses in vitro is reduced by pretreatment with small amounts of type I interferon (IFN-α/β). Similarly, pretreatment of animals with IFN and experiments using mice defective in IFN signaling have indicated a role for IFN in controlling flavivirus disease in vivo. These data, along with findings that flavivirus-infected cells block IFN signaling, suggest that flavivirus infection can trigger an IFN response. To investigate IFN gene induction by the very first cells infected during in vivo infection with the flavivirus West Nile virus (WNV), we infected mice with high-titer preparations of WNV virus-like particles (VLPs), which initiate viral genome replication in cells but fail to spread. These studies demonstrated a brisk production of IFN in vivo, with peak levels of over 1,000 units/ml detected in sera between 8 and 24 h after inoculation by either the intraperitoneal or footpad route. The IFN response was dependent on genome replication, and WNV genomes and WNV antigen-positive cells were readily detected in the popliteal lymph nodes (pLN) of VLP-inoculated mice. High levels of IFN mRNA transcripts and functional IFN were also produced in VLP-inoculated IFN regulatory factor 3 null (IRF3−/−) mice, indicating that IFN production was independent of the IRF3 pathways to IFN gene transcription, consistent with the IFN type produced (predominantly α).


2012 ◽  
Vol 93 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Payal D. Maharaj ◽  
Michael Anishchenko ◽  
Stanley A. Langevin ◽  
Ying Fang ◽  
William K. Reisen ◽  
...  

Despite utilizing the same avian hosts and mosquito vectors, St Louis encephalitis virus (SLEV) and West Nile virus (WNV) display dissimilar vector-infectivity and vertebrate-pathogenic phenotypes. SLEV exhibits a low oral infection threshold for Culex mosquito vectors and is avirulent in avian hosts, producing low-magnitude viraemias. In contrast, WNV is less orally infective to mosquitoes and elicits high-magnitude viraemias in a wide range of avian species. In order to identify the genetic determinants of these different phenotypes and to assess the utility of mosquito and vertebrate cell lines for recapitulating in vivo differences observed between these viruses, reciprocal WNV and SLEV pre-membrane and envelope protein (prME) chimeric viruses were generated and growth of these mutant viruses was characterized in mammalian (Vero), avian (duck) and mosquito [Aedes (C6/36) and Culex (CT)] cells. In both vertebrate lines, WNV grew to 100-fold higher titres than SLEV, and growth and cytopathogenicity phenotypes, determined by chimeric phenotypes, were modulated by genetic elements outside the prME gene region. Both chimeras exhibited distinctive growth patterns from those of SLEV in C6/36 cells, indicating the role of both structural and non-structural gene regions for growth in this cell line. In contrast, growth of chimeric viruses was indistinguishable from that of virus containing homologous prME genes in CT cells, indicating that structural genetic elements could specifically dictate growth differences of these viruses in relevant vectors. These data provide genetic insight into divergent enzootic maintenance strategies that could also be useful for the assessment of emergence mechanisms of closely related flaviviruses.


Sign in / Sign up

Export Citation Format

Share Document