scholarly journals WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent “β-Lactam Enhancer” Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-β-Lactamase-Producing High-Risk Clones

2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Bartolome Moya ◽  
Isabel M. Barcelo ◽  
Sachin Bhagwat ◽  
Mahesh Patel ◽  
German Bou ◽  
...  

ABSTRACT Zidebactam and WCK 5153 are novel β-lactam enhancers that are bicyclo-acyl hydrazides (BCH), derivatives of the diazabicyclooctane (DBO) scaffold, targeted for the treatment of serious infections caused by highly drug-resistant Gram-negative pathogens. In this study, we determined the penicillin-binding protein (PBP) inhibition profiles and the antimicrobial activities of zidebactam and WCK 5153 against Pseudomonas aeruginosa, including multidrug-resistant (MDR) metallo-β-lactamase (MBL)-producing high-risk clones. MIC determinations and time-kill assays were conducted for zidebactam, WCK 5153, and antipseudomonal β-lactams using wild-type PAO1, MexAB-OprM-hyperproducing (mexR), porin-deficient (oprD), and AmpC-hyperproducing (dacB) derivatives of PAO1, and MBL-expressing clinical strains ST175 (bla VIM-2) and ST111 (bla VIM-1). Furthermore, steady-state kinetics was used to assess the inhibitory potential of these compounds against the purified VIM-2 MBL. Zidebactam and WCK 5153 showed specific PBP2 inhibition and did not inhibit VIM-2 (apparent Ki [Ki app] > 100 μM). MICs for zidebactam and WCK 5153 ranged from 2 to 32 μg/ml (amdinocillin MICs > 32 μg/ml). Time-kill assays revealed bactericidal activity of zidebactam and WCK 5153. LIVE-DEAD staining further supported the bactericidal activity of both compounds, showing spheroplast formation. Fixed concentrations (4 or 8 μg/ml) of zidebactam and WCK 5153 restored susceptibility to all of the tested β-lactams for each of the P. aeruginosa mutant strains. Likewise, antipseudomonal β-lactams (CLSI breakpoints), in combination with 4 or 8 μg/ml of zidebactam or WCK 5153, resulted in enhanced killing. Certain combinations determined full bacterial eradication, even with MDR MBL-producing high-risk clones. β-Lactam–WCK enhancer combinations represent a promising β-lactam “enhancer-based” approach to treat MDR P. aeruginosa infections, bypassing the need for MBL inhibition.

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Bartolome Moya ◽  
Isabel M. Barcelo ◽  
Sachin Bhagwat ◽  
Mahesh Patel ◽  
German Bou ◽  
...  

ABSTRACT Multidrug-resistant Acinetobacter baumannii has rapidly spread worldwide, resulting in a serious threat to hospitalized patients. Zidebactam and WCK 5153 are novel non-β-lactam bicyclo-acyl hydrazide β-lactam enhancer antibiotics being developed to target multidrug-resistant A. baumannii. The objectives of this work were to determine the 50% inhibitory concentrations (IC50s) for penicillin-binding proteins (PBP), the OXA-23 inhibition profiles, and the antimicrobial activities of zidebactam and WCK 5153, alone and in combination with β-lactams, against multidrug-resistant A. baumannii. MICs and time-kill kinetics were determined for an A. baumannii clinical strain producing the carbapenemase OXA-23 and belonging to the widespread European clone II of sequence type 2 (ST2). Inhibition of the purified OXA-23 enzyme by zidebactam, WCK 5153, and comparators was assessed. All of the compounds tested displayed apparent Ki values of >100 μM, indicating poor OXA-23 β-lactamase inhibition. The IC50s of zidebactam, WCK 5153, cefepime, ceftazidime, meropenem, and sulbactam (range of concentrations tested, 0.02 to 2 μg/ml) for PBP were also determined. Zidebactam and WCK 5153 demonstrated specific high-affinity binding to PBP2 of A. baumannii (0.01 μg/ml for both of the compounds). The MICs of zidebactam and WCK 5153 were >1,024 μg/ml for wild-type and multidrug-resistant Acinetobacter strains. Importantly, combinations of cefepime with 8 μg/ml of zidebactam or WCK 5153 and sulbactam with 8 μg/ml of zidebactam or WCK 5153 led to 4- and 8-fold reductions of the MICs, respectively, and showed enhanced killing. Notably, several of the combinations resulted in full bacterial eradication at 24 h. We conclude that zidebactam and WCK 5153 are PBP2 inhibitors that show a potent β-lactam enhancer effect against A. baumannii, including a multidrug-resistant OXA-23-producing ST2 international clone.


2014 ◽  
Vol 58 (9) ◽  
pp. 5297-5305 ◽  
Author(s):  
Tiffany R. Keepers ◽  
Marcela Gomez ◽  
Chris Celeri ◽  
Wright W. Nichols ◽  
Kevin M. Krause

ABSTRACTAvibactam, a non-β-lactam β-lactamase inhibitor with activity against extended-spectrum β-lactamases (ESBLs), KPC, AmpC, and some OXA enzymes, extends the antibacterial activity of ceftazidime against most ceftazidime-resistant organisms producing these enzymes. In this study, the bactericidal activity of ceftazidime-avibactam against 18Pseudomonas aeruginosaisolates and 15Enterobacteriaceaeisolates, including wild-type isolates and ESBL, KPC, and/or AmpC producers, was evaluated. Ceftazidime-avibactam MICs (0.016 to 32 μg/ml) were lower than those for ceftazidime alone (0.06 to ≥256 μg/ml) against all isolates except for 2P. aeruginosaisolates (1blaVIM-positive isolate and 1blaOXA-23-positive isolate). The minimum bactericidal concentration/MIC ratios of ceftazidime-avibactam were ≤4 for all isolates, indicating bactericidal activity. Human serum and human serum albumin had a minimal effect on ceftazidime-avibactam MICs. Ceftazidime-avibactam time-kill kinetics were evaluated at low MIC multiples and showed time-dependent reductions in the number of CFU/ml from 0 to 6 h for all strains tested. A ≥3-log10decrease in the number of CFU/ml was observed at 6 h for allEnterobacteriaceae, and a 2-log10reduction in the number of CFU/ml was observed at 6 h for 3 of the 6P. aeruginosaisolates. Regrowth was noted at 24 h for some of the isolates tested in time-kill assays. These data demonstrate the potent bactericidal activity of ceftazidime-avibactam and support the continued clinical development of ceftazidime-avibactam as a new treatment option for infections caused byEnterobacteriaceaeandP. aeruginosa, including isolates resistant to ceftazidime by mechanisms dependent on avibactam-sensitive β-lactamases.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Anna Olsson ◽  
Pikkei Wistrand-Yuen ◽  
Elisabet I. Nielsen ◽  
Lena E. Friberg ◽  
Linus Sandegren ◽  
...  

ABSTRACT Antibiotic combination therapy is used for severe infections caused by multidrug-resistant (MDR) Gram-negative bacteria, yet data regarding which combinations are most effective are lacking. This study aimed to evaluate the in vitro efficacy of polymyxin B in combination with 13 other antibiotics against four clinical strains of MDR Pseudomonas aeruginosa. We evaluated the interactions of polymyxin B in combination with amikacin, aztreonam, cefepime, chloramphenicol, ciprofloxacin, fosfomycin, linezolid, meropenem, minocycline, rifampin, temocillin, thiamphenicol, or trimethoprim by automated time-lapse microscopy using predefined cutoff values indicating inhibition of growth (≤106 CFU/ml) at 24 h. Promising combinations were subsequently evaluated in static time-kill experiments. All strains were intermediate or resistant to polymyxin B, antipseudomonal β-lactams, ciprofloxacin, and amikacin. Genes encoding β-lactamases (e.g., blaPAO and blaOXA-50) and mutations associated with permeability and efflux were detected in all strains. In the time-lapse microscopy experiments, positive interactions were found with 39 of 52 antibiotic combination/bacterial strain setups. Enhanced activity was found against all four strains with polymyxin B used in combination with aztreonam, cefepime, fosfomycin, minocycline, thiamphenicol, and trimethoprim. Time-kill experiments showed additive or synergistic activity with 27 of the 39 tested polymyxin B combinations, most frequently with aztreonam, cefepime, and meropenem. Positive interactions were frequently found with the tested combinations, against strains that harbored several resistance mechanisms to the single drugs, and with antibiotics that are normally not active against P. aeruginosa. Further study is needed to explore the clinical utility of these combinations.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
M. Thwaites ◽  
D. Hall ◽  
D. Shinabarger ◽  
A. W. Serio ◽  
K. M. Krause ◽  
...  

ABSTRACT The next-generation aminoglycoside plazomicin, in development for infections due to multidrug-resistant (MDR) Enterobacteriaceae, was evaluated alongside comparators for bactericidal activity in minimum bactericidal concentration (MBC) and time-kill (TK) assays against MDR Enterobacteriaceae isolates with characterized aminoglycoside and β-lactam resistance mechanisms. Overall, plazomicin and colistin were the most potent, with plazomicin demonstrating an MBC50/90 of 0.5/4 μg/ml and sustained 3-log10 kill against MDR Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp.


2016 ◽  
Vol 60 (4) ◽  
pp. 1967-1973 ◽  
Author(s):  
Rachel L. Soon ◽  
Justin R. Lenhard ◽  
Zackery P. Bulman ◽  
Patricia N. Holden ◽  
Pamela Kelchlin ◽  
...  

ABSTRACTDespite a dearth of new agents currently being developed to combat multidrug-resistant Gram-negative pathogens, the combination of ceftolozane and tazobactam was recently approved by the Food and Drug Administration to treat complicated intra-abdominal and urinary tract infections. To characterize the activity of the combination product, time-kill studies were conducted against 4 strains ofEscherichia colithat differed in the type of β-lactamase they expressed. The four investigational strains included 2805 (no β-lactamase), 2890 (AmpC β-lactamase), 2842 (CMY-10 β-lactamase), and 2807 (CTX-M-15 β-lactamase), with MICs to ceftolozane of 0.25, 4, 8, and >128 mg/liter with no tazobactam, and MICs of 0.25, 1, 4, and 8 mg/liter with 4 mg/liter tazobactam, respectively. All four strains were exposed to a 6 by 5 array of ceftolozane (0, 1, 4, 16, 64, and 256 mg/liter) and tazobactam (0, 1, 4, 16, and 64 mg/liter) over 48 h using starting inocula of 106and 108CFU/ml. While ceftolozane-tazobactam achieved bactericidal activity against all 4 strains, the concentrations of ceftolozane and tazobactam required for a ≥3-log reduction varied between the two starting inocula and the 4 strains. At both inocula, the Hill plots (R2> 0.882) of ceftolozane revealed significantly higher 50% effective concentrations (EC50s) at tazobactam concentrations of ≤4 mg/liter than those at concentrations of ≥16 mg/liter (P< 0.01). Moreover, the EC50s at 108CFU/ml were 2.81 to 66.5 times greater than the EC50s at 106CFU/ml (median, 10.7-fold increase;P= 0.002). These promising results indicate that ceftolozane-tazobactam achieves bactericidal activity against a wide range of β-lactamase-producingE. colistrains.


2011 ◽  
Vol 55 (11) ◽  
pp. 5134-5142 ◽  
Author(s):  
Phillip J. Bergen ◽  
Alan Forrest ◽  
Jürgen B. Bulitta ◽  
Brian T. Tsuji ◽  
Hanna E. Sidjabat ◽  
...  

ABSTRACTThe use of combination antibiotic therapy may be beneficial against rapidly emerging resistance inPseudomonas aeruginosa. The aim of this study was to systematically investigatein vitrobacterial killing and resistance emergence with colistin alone and in combination with imipenem against multidrug-resistant (MDR)P. aeruginosa. Time-kill studies were conducted over 48 h using 5 clinical isolates and ATCC 27853 at two inocula (∼106and ∼108CFU/ml); MDR, non-MDR, and colistin-heteroresistant and -resistant strains were included. Nine colistin-imipenem combinations were investigated. Microbiological response was examined by log changes at 6, 24, and 48 h. Colistin combined with imipenem at clinically relevant concentrations increased the levels of killing of MDR and colistin-heteroresistant isolates at both inocula. Substantial improvements in activity with combinations were observed across 48 h with all colistin concentrations at the low inoculum and with colistin at 4× and 16× MIC (or 4 and 32 mg/liter) at the high inoculum. Combinations were additive or synergistic against imipenem-resistant isolates (MICs, 16 and 32 mg/liter) at the 106-CFU inoculum in 9, 11, and 12 of 18 cases (i.e., 9 combinations across 2 isolates) at 6, 24, and 48 h, respectively, and against the same isolates at the 108-CFU inoculum in 11, 7, and 8 cases, respectively. Against a colistin-resistant strain (MIC, 128 mg/liter), combinations were additive or synergistic in 9 and 8 of 9 cases at 24 h at the 106- and 108-CFU inocula, respectively, and in 5 and 7 cases at 48 h. This systematic study provides important information for optimization of colistin-imipenem combinations targeting both colistin-susceptible and colistin-resistant subpopulations.


2011 ◽  
Vol 55 (7) ◽  
pp. 3603-3608 ◽  
Author(s):  
G. A. Denys ◽  
J. C. Davis ◽  
P. D. O'Hanley ◽  
J. T. Stephens

ABSTRACTWe evaluated thein vitroandin vivoactivity of a novel topical myeloperoxidase-mediated antimicrobial, E-101 solution, against 5 multidrug-resistantAcinetobacter baumanniiisolates recovered from wounded American soldiers. Time-kill studies demonstrated rapid bactericidal activity against allA. baumanniistrains tested in the presence of 3% blood. Thein vitrobactericidal activity of E-101 solution againstA. baumanniistrains was confirmed in a full-thickness excision rat model. Additionalin vivostudies appear warranted.


2019 ◽  
Vol 63 (5) ◽  
Author(s):  
Bartolome Moya ◽  
Isabel M. Barcelo ◽  
Gabriel Cabot ◽  
Gabriel Torrens ◽  
Snehal Palwe ◽  
...  

ABSTRACT Zidebactam and WCK 5153 are novel bicyclo-acyl hydrazide (BCH) agents that have previously been shown to act as β-lactam enhancer (BLE) antibiotics in Pseudomonas aeruginosa and Acinetobacter baumannii. The objectives of this work were to identify the molecular targets of these BCHs in Klebsiella pneumoniae and to investigate their potential BLE activity for cefepime and aztreonam against metallo-β-lactamase (MBL)-producing strains in vitro and in vivo. Penicillin binding protein (PBP) binding profiles were determined by Bocillin FL assay, and 50% inhibitory concentrations (IC50s) were determined using ImageQuant TL software. MICs and kill kinetics for zidebactam, WCK 5153, and cefepime or aztreonam, alone and in combination, were determined against clinical K. pneumoniae isolates producing MBLs VIM-1 or NDM-1 (plus ESBLs and class C β-lactamases) to assess the in vitro enhancer effect of BCH compounds in conjunction with β-lactams. Additionally, murine systemic and thigh infection studies were conducted to evaluate BLE effects in vivo. Zidebactam and WCK 5153 showed specific, high PBP2 affinity in K. pneumoniae. The MICs of BLEs were >64 μg/ml for all MBL-producing strains. Time-kill studies showed that a combination of these BLEs with either cefepime or aztreonam provided 1 to >3 log10 kill against MBL-producing K. pneumoniae strains. Furthermore, the bactericidal synergy observed for these BLE–β-lactam combinations translated well into in vivo efficacy even in the absence of MBL inhibition by BLEs, a characteristic feature of the β-lactam enhancer mechanism of action. Zidebactam and WCK 5153 are potent PBP2 inhibitors and display in vitro and in vivo BLE effects against multidrug-resistant (MDR) K. pneumoniae clinical isolates producing MBLs.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Patrick Grohs ◽  
Gary Taieb ◽  
Philippe Morand ◽  
Iheb Kaibi ◽  
Isabelle Podglajen ◽  
...  

ABSTRACT Ceftolozane-tazobactam was tested against 58 multidrug-resistant nonfermenting Gram-negative bacilli (35 Pseudomonas aeruginosa, 11 Achromobacter xylosoxydans, and 12 Stenotrophomonas maltophilia isolates) isolated from cystic fibrosis patients and was compared to ceftolozane alone, ceftazidime, meropenem, and piperacillin-tazobactam. Ceftolozane-tazobactam was the most active agent against P. aeruginosa but was inactive against A. xylosoxydans and S. maltophilia. In time-kill experiments, ceftolozane-tazobactam had complete bactericidal activity against 2/6 clinical isolates (33%).


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Yu Mi Wi ◽  
Kerryl E. Greenwood-Quaintance ◽  
Audrey N. Schuetz ◽  
Kwan Soo Ko ◽  
Kyong Ran Peck ◽  
...  

ABSTRACT Although carbapenems are effective for treating serious multidrug-resistant Pseudomonas aeruginosa infections, carbapenem-resistant P. aeruginosa (CRPA) is now being reported worldwide. Ceftolozane-tazobactam (C/T) demonstrates activity against many multidrug-resistant isolates. We evaluated the activity of C/T and compared its activity to that of ceftazidime-avibactam (C/A) using a well-characterized collection of non-carbapenemase-producing CRPA isolates. Forty-two non-carbapenemase-producing CRPA isolates from a previous study (J. Y. Lee and K. S. Ko, Int J Antimicrob Agents 40:168–172, 2012, https://doi.org/10.1016/j.ijantimicag.2012.04.004) were included. All had been previously shown to be negative for bla IMP, bla VIM, bla SPM, bla GIM, bla SIM, and bla KPC by PCR. In the prior study, expression of oprD, ampC, and several efflux pump genes had been defined by quantitative reverse transcription-PCR. Here, antimicrobial susceptibility was determined by broth microdilution according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Time-kill curve assays were performed using three C/T- and C/A-susceptible CRPA isolates. Among 42 non-carbapenemase-producing CRPA isolates, overall susceptibility to C/T was 95.2%, compared to 71.4%, 42.9%, 23.8%, 21.4%, and 2.4% for C/A, ceftazidime, piperacillin-tazobactam, cefepime, and meropenem, respectively. The C/T resistance rate was significantly lower than that of C/A among isolates showing decreased oprD and increased mexB expression (5.1% versus 25.6%, P = 0.025, and 4.3% versus 34.8%, P = 0.022, respectively). In time-kill curve studies, C/T was less bactericidal than C/A against an isolate with decreased oprD and increased ampC expression. C/T was active against 95.2% of non-carbapenemase-producing CRPA clinical isolates. No apparent correlation of C/T MIC values with specific mutation-driven resistance mechanisms was noted.


Sign in / Sign up

Export Citation Format

Share Document