scholarly journals A Novelmeso-Diaminopimelate Dehydrogenase from Symbiobacterium thermophilum: Overexpression, Characterization, and Potential for d-Amino Acid Synthesis

2012 ◽  
Vol 78 (24) ◽  
pp. 8595-8600 ◽  
Author(s):  
Xiuzhen Gao ◽  
Xi Chen ◽  
Weidong Liu ◽  
Jinhui Feng ◽  
Qiaqing Wu ◽  
...  

ABSTRACTmeso-Diaminopimelate dehydrogenase (meso-DAPDH) is an NADP+-dependent enzyme which catalyzes the reversible oxidative deamination on thed-configuration ofmeso-2,6-diaminopimelate to producel-2-amino-6-oxopimelate. In this study, the gene encoding ameso-diaminopimelate dehydrogenase fromSymbiobacterium thermophilumwas cloned and expressed inEscherichia coli. In addition to the native substratemeso-2,6-diaminopimelate, the purified enzyme also showed activity towardd-alanine,d-valine, andd-lysine. This enzyme catalyzed the reductive amination of 2-keto acids such as pyruvic acid to generated-amino acids in up to 99% conversion and 99% enantiomeric excess. Sincemeso-diaminopimelate dehydrogenases are known to be specific tomeso-2,6-diaminopimelate, this is a unique wild-typemeso-diaminopimelate dehydrogenase with a more relaxed substrate specificity and potential ford-amino acid synthesis. The enzyme is the most stablemeso-diaminopimelate dehydrogenase reported to now. Two amino acid residues (F146 and M152) in the substrate binding sites ofS. thermophilum meso-DAPDH different from the sequences of other knownmeso-DAPDHs were replaced with the conserved amino acids in othermeso-DAPDHs, and assay of wild-type and mutant enzyme activities revealed that F146 and M152 are not critical in determining the enzyme's substrate specificity. The high thermostability and relaxed substrate profile ofS. thermophilum meso-DAPDH warrant it as an excellent starting enzyme for creating effectived-amino acid dehydrogenases by protein engineering.

1997 ◽  
Vol 10 (1) ◽  
pp. 102-106 ◽  
Author(s):  
Marco Simons ◽  
Hjalmar P. Permentier ◽  
Letty A. de Weger ◽  
Carel A. Wijffelman ◽  
Ben J. J. Lugtenberg

In this work the bio-availability of amino acids for the root-colonizing Pseudomonas fluorescens strain WCS365 in the tomato rhizosphere was studied. The amino acid composition of axenically collected tomato root exudate was determined. The results show that aspartic acid, glutamic acid, isoleucine, leucine, and lysine are the major amino acid components. The concentrations of individual amino acids in the rhizosphere of gnotobiotically grown tomato plants were estimated and considered to be too low to support growth of rhizosphere micro-organisms to numbers usually found in the tomato rhizosphere. To test this experimentally, mutants of P. fluorescens WCS365 auxotrophic for the amino acids leucine, arginine, histidine, isoleucine plus valine, and tryptophan were isolated after mutagenesis with Tn5lacZ. Root tip colonization of these mutants was measured after inoculation of germinated tomato seeds and subsequent growth in a gnotobiotic quartz sand system (M. Simons, A. J. van der Bij, I. Brand, L. A. de Weger, C. A. Wijffelman, and B. J. J. Lugtenberg. 1996. Gnotobiotic system for studying rhizo-sphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interact. 9:600–607). In contrast to the wild-type strain, none of the five amino acid auxotrophs tested was able to colonize the tomato root tip, neither alone nor after co-inoculation with the wild-type strain. However, addition of the appropriate amino acid to the system restored colonization by the auxotrophic mutants, usually to wild-type levels. Analysis of the root base showed that cells of auxotrophic mutants were still present there. The results show that, although amino acids are present in root exudate, the bio-availability of the tested amino acids is too low to support root tip colonization by auxotrophic mutants of P. fluorescens strain WCS365. The genes that are required for amino acid synthesis are therefore necessary for root colonization. Moreover, these compounds apparently play no major role as nutrients in the tomato rhizosphere.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1707
Author(s):  
Wayiza Masamba

α-Amino acids find widespread applications in various areas of life and physical sciences. Their syntheses are carried out by a multitude of protocols, of which Petasis and Strecker reactions have emerged as the most straightforward and most widely used. Both reactions are three-component reactions using the same starting materials, except the nucleophilic species. The differences and similarities between these two important reactions are highlighted in this review.


2019 ◽  
Vol 122 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Lisa Vettore ◽  
Rebecca L. Westbrook ◽  
Daniel A. Tennant

AbstractAn abundant supply of amino acids is important for cancers to sustain their proliferative drive. Alongside their direct role as substrates for protein synthesis, they can have roles in energy generation, driving the synthesis of nucleosides and maintenance of cellular redox homoeostasis. As cancer cells exist within a complex and often nutrient-poor microenvironment, they sometimes exist as part of a metabolic community, forming relationships that can be both symbiotic and parasitic. Indeed, this is particularly evident in cancers that are auxotrophic for particular amino acids. This review discusses the stromal/cancer cell relationship, by using examples to illustrate a number of different ways in which cancer cells can rely on and contribute to their microenvironment – both as a stable network and in response to therapy. In addition, it examines situations when amino acid synthesis is driven through metabolic coupling to other reactions, and synthesis is in excess of the cancer cell’s proliferative demand. Finally, it highlights the understudied area of non-proteinogenic amino acids in cancer metabolism and their potential role.


2007 ◽  
Vol 73 (16) ◽  
pp. 5370-5373 ◽  
Author(s):  
Shigenori Yamaguchi ◽  
Hidenobu Komeda ◽  
Yasuhisa Asano

ABSTRACT d- and l-amino acids were produced from l- and d-amino acid amides by d-aminopeptidase from Ochrobactrum anthropi C1-38 and l-amino acid amidase from Pseudomonas azotoformans IAM 1603, respectively, in the presence of α-amino-ε-caprolactam racemase from Achromobacter obae as the catalyst by dynamic kinetic resolution of amino acid amides.


2019 ◽  
Vol 7 (12) ◽  
pp. 693 ◽  
Author(s):  
Ting Li ◽  
Zhaohong Zhan ◽  
Yunuan Lin ◽  
Maojuan Lin ◽  
Qingbiao Xie ◽  
...  

Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice bacterial blight disease, which causes a large reduction in rice production. The successful interaction of pathogens and plants requires a particular nutrient environment that allows pathogen growth and the initiation of both pathogen and host responses. Amino acid synthesis is essential for bacterial growth when bacteria encounter amino acid-deficient environments, but the effects of amino acid synthesis on Xoo pathogenicity are unclear. Here, we systemically deleted the essential genes (leuB, leuC, leuD, ilvC, thrC, hisD, trpC, argH, metB, and aspC) involved in the synthesis of different amino acids and analyzed the effects of these mutations on Xoo virulence. Our results showed that leucine, isoleucine, valine, histidine, threonine, arginine, tryptophan, and cysteine syntheses are essential to Xoo infection. We further studied the role of leucine in the interaction between pathogens and hosts and found that leucine could stimulate some virulence-related responses and regulate Xoo pathogenicity. Our findings highlight that amino acids not only act as nutrients for bacterial growth but also play essential roles in the Xoo and rice interaction.


2010 ◽  
Vol 76 (5) ◽  
pp. 1507-1515 ◽  
Author(s):  
Motoyuki Shimizu ◽  
Tatsuya Fujii ◽  
Shunsuke Masuo ◽  
Naoki Takaya

ABSTRACT Although branched-chain amino acids are synthesized as building blocks of proteins, we found that the fungus Aspergillus nidulans excretes them into the culture medium under hypoxia. The transcription of predicted genes for synthesizing branched-chain amino acids was upregulated by hypoxia. A knockout strain of the gene encoding the large subunit of acetohydroxy acid synthase (AHAS), which catalyzes the initial reaction of the synthesis, required branched-chain amino acids for growth and excreted very little of them. Pyruvate, a substrate for AHAS, increased the amount of hypoxic excretion in the wild-type strain. These results indicated that the fungus responds to hypoxia by synthesizing branched-chain amino acids via a de novo mechanism. We also found that the small subunit of AHAS regulated hypoxic branched-chain amino acid production as well as cellular AHAS activity. The AHAS knockout resulted in higher ratios of NADH/NAD+ and NADPH/NADP+ under hypoxia, indicating that the branched-chain amino acid synthesis contributed to NAD+ and NADP+ regeneration. The production of branched-chain amino acids and the hypoxic induction of involved genes were partly repressed in the presence of glucose, where cells produced ethanol and lactate and increased levels of lactate dehydrogenase activity. These indicated that hypoxic branched-chain amino acid synthesis is a unique alternative mechanism that functions in the absence of glucose-to-ethanol/lactate fermentation and oxygen respiration.


2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Melissa Loddeke ◽  
Barbara Schneider ◽  
Tamiko Oguri ◽  
Iti Mehta ◽  
Zhenyu Xuan ◽  
...  

ABSTRACT Salmonella enterica has two CyuR-activated enzymes that degrade cysteine, i.e., the aerobic CdsH and an unidentified anaerobic enzyme; Escherichia coli has only the latter. To identify the anaerobic enzyme, transcript profiling was performed for E. coli without cyuR and with overexpressed cyuR. Thirty-seven genes showed at least 5-fold changes in expression, and the cyuPA (formerly yhaOM) operon showed the greatest difference. Homology suggested that CyuP and CyuA represent a cysteine transporter and an iron-sulfur-containing cysteine desulfidase, respectively. E. coli and S. enterica ΔcyuA mutants grown with cysteine generated substantially less sulfide and had lower growth yields. Oxygen affected the CyuR-dependent genes reciprocally; cyuP-lacZ expression was greater anaerobically, whereas cdsH-lacZ expression was greater aerobically. In E. coli and S. enterica, anaerobic cyuP expression required cyuR and cysteine and was induced by l-cysteine, d-cysteine, and a few sulfur-containing compounds. Loss of either CyuA or RidA, both of which contribute to cysteine degradation to pyruvate, increased cyuP-lacZ expression, which suggests that CyuA modulates intracellular cysteine concentrations. Phylogenetic analysis showed that CyuA homologs are present in obligate and facultative anaerobes, confirming an anaerobic function, and in archaeal methanogens and bacterial acetogens, suggesting an ancient origin. Our results show that CyuA is the major anaerobic cysteine-catabolizing enzyme in both E. coli and S. enterica, and it is proposed that anaerobic cysteine catabolism can contribute to coordination of sulfur assimilation and amino acid synthesis. IMPORTANCE Sulfur-containing compounds such as cysteine and sulfide are essential and reactive metabolites. Exogenous sulfur-containing compounds can alter the thiol landscape and intracellular redox reactions and are known to affect several cellular processes, including swarming motility, antibiotic sensitivity, and biofilm formation. Cysteine inhibits several enzymes of amino acid synthesis; therefore, increasing cysteine concentrations could increase the levels of the inhibited enzymes. This inhibition implies that control of intracellular cysteine levels, which is the immediate product of sulfide assimilation, can affect several pathways and coordinate metabolism. For these and other reasons, cysteine and sulfide concentrations must be controlled, and this work shows that cysteine catabolism contributes to this control.


2021 ◽  
Vol 9 (10) ◽  
pp. 2148
Author(s):  
Chunguang Liang ◽  
Ana Rios-Miguel ◽  
Marcel Jarick ◽  
Priya Neurgaonkar ◽  
Myriam Girard ◽  
...  

Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB+) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB-) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.


1991 ◽  
Vol 11 (10) ◽  
pp. 4809-4821
Author(s):  
D Poon ◽  
S Schroeder ◽  
C K Wang ◽  
T Yamamoto ◽  
M Horikoshi ◽  
...  

We have examined the structure-function relationships of TFIID through in vivo complementation tests. A yeast strain was constructed which lacked the chromosomal copy of SPT15, the gene encoding TFIID, and was therefore dependent on a functional plasmid-borne wild-type copy of this gene for viability. By using the plasmid shuffle technique, the plasmid-borne wild-type TFIID gene was replaced with a family of plasmids containing a series of systematically mutated TFIID genes. These various forms of TFIID were expressed from three different promoter contexts of different strengths, and the ability of each mutant form of TFIID to complement our chromosomal TFIID null allele was assessed. We found that the first 61 amino acid residues of TFIID are totally dispensable for vegetative cell growth, since yeast strains containing this deleted form of TFIID grow at wild-type rates. Amino-terminally deleted TFIID was further shown to be able to function normally in vivo by virtue of its ability both to promote accurate transcription initiation from a large number of different genes and to interact efficiently with the Gal4 protein to activate transcription of GAL1 with essentially wild-type kinetics. Any deletion removing sequences from within the conserved carboxy-terminal region of S. cerevisiae TFIID was lethal. Further, the exact sequence of the conserved carboxy-terminal portion of the molecule is critical for function, since of several heterologous TFIID homologs tested, only the highly related Schizosaccharomyces pombe gene could complement our S. cerevisiae TFIID null mutant. Taken together, these data indicate that all important functional domains of TFIID appear to lie in its carboxy-terminal 179 amino acid residues. The significance of these findings regarding TFIID function are discussed.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1027-1027
Author(s):  
Melissa A. Blum ◽  
Tivadar Orban ◽  
Daniel O. Beck ◽  
Michael Kalafatis

Abstract The prothrombinase complex, composed of the enzyme factor Xa, the cofactor factor Va, and the substrate prothrombin associated on a cell surface in the presence of divalent metal ions, catalyzes the activation of prothrombin to thrombin 300,000-fold more effectively than the enzyme, factor Xa, alone. We have demonstrated that amino acids E323, Y324 and E330, V331 are binding sites for factor Xa on the factor Va heavy chain and are required for coordinating the spatial arrangement of enzyme and substrate directing prothrombin cleavage at two spatially distinct sites. We have also demonstrated that amino acid region 332–336 contains residues that are involved in cofactor function. Peptide studies have identified amino acid residues 334DY335 as major participants in factor Va cofactor activity. We have employed site-directed mutagenesis to study the effect of these amino acids on the catalytic efficiency of prothrombinase. Recombinant factor V molecules with the mutations D334K and Y335F, designated factor VKF, and D334A and Y335A, designated factor VAA were produced, transiently transfected, expressed in COS7L cells, and purified. Kinetic studies demonstrate that while factor VaKF has a KD for factor Xa similar to the KD observed for wild type factor Va, the kcat of prothrombinase assembled with factor VaKF has approximately a 1.5-fold decreased value compared to kcat of prothrombinase assembled with the wild type cofactor molecule. On the contrary, prothrombinase assembled with factor VaAA was found to have a nearly 10-fold decrease kcat, compared to prothrombinase assembled with wild type factor Va. This data suggest that not all amino acid substitutions are well tolerated at positions 334–335. Analysis of the sequence 323–340 using the recently published completed model of coagulation factor Va (pdb entry 1Y61) revealed that amino acids 334–335 are located at the end of a beta-sheet. To ascertain the importance of these mutants and their contribution to cofactor activity we have combined the mutations of amino acids 334–335 with mutations at amino acids 323–324 (E323F, Y324F) and 330–331 (E330M, V331I). We thus created quadruple mutants resulting in recombinant factor VFF/KF, factor VFF/AA, factor VMI/KF and factor VMI/AA. These molecules were transiently expressed in COS-7L cells and studied for their ability to be incorporated into prothrombinase. Free energies associated with the catalytic efficiencies of prothrombinase assembled with each mutant were also calculated (ΔΔGint). The ΔΔGint of interaction for the double mutants, factor VaFF/KF and factor VaMI/KF, had positive values indicating that the side chains of amino acids 330EV331, 323EY324 and 334DY335 located in and around the factor Xa binding site interact in a synergistic manner resulting in the destabilization of the transition state complex and a decelerated rate of catalysis. Conversely, combining the factor Xa binding site mutants with recombinant factor VaAA result in ΔΔGint values of approximately zero. In conclusion, the data demonstrate that replacement of amino acids 334–335 by two hydrophilic residues results in decreased cofactor function. In contrast, replacement of these amino acids by two small hydrophobic residues do not appear to be well tolerated by the cofactor resulting in severely impaired cofactor activity. Altogether, these data demonstrate the importance of amino acid residues D334 and Y335 for the rearrangement of enzyme and substrate required for efficient catalysis.


Sign in / Sign up

Export Citation Format

Share Document