scholarly journals Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris marina

2016 ◽  
Vol 198 (9) ◽  
pp. 1393-1400 ◽  
Author(s):  
Guangyu E. Chen ◽  
Andrew Hitchcock ◽  
Philip J. Jackson ◽  
Roy R. Chaudhuri ◽  
Mark J. Dickman ◽  
...  

ABSTRACTThe major photopigment of the cyanobacteriumAcaryochloris marinais chlorophylld, while its direct biosynthetic precursor, chlorophylla, is also present in the cell. These pigments, along with the majority of chlorophylls utilized by oxygenic phototrophs, carry an ethyl group at the C-8 position of the molecule, having undergone reduction of a vinyl group during biosynthesis. Two unrelated classes of 8-vinyl reductase involved in the biosynthesis of chlorophylls are known to exist, BciA and BciB. The genome ofAcaryochloris marinacontains open reading frames (ORFs) encoding proteins displaying high sequence similarity to BciA or BciB, although they are annotated as genes involved in transcriptional control (nmrA) and methanogenesis (frhB), respectively. These genes were introduced into an 8-vinyl chlorophylla-producing ΔbciBstrain ofSynechocystissp. strain PCC 6803, and both were shown to restore synthesis of the pigment with an ethyl group at C-8, demonstrating their activities as 8-vinyl reductases. We propose thatnmrAandfrhBbe reassigned asbciAandbciB, respectively; transcript and proteomic analysis ofAcaryochloris marinareveal that bothbciAandbciBare expressed and their encoded proteins are present in the cell, possibly in order to ensure that all synthesized chlorophyll pigment carries an ethyl group at C-8. Potential reasons for the presence of two 8-vinyl reductases in this strain, which is unique for cyanobacteria, are discussed.IMPORTANCEThe cyanobacteriumAcaryochloris marinais the best-studied phototrophic organism that uses chlorophylldfor photosynthesis. Unique among cyanobacteria sequenced to date, its genome contains ORFs encoding two unrelated enzymes that catalyze the reduction of the C-8 vinyl group of a precursor molecule to an ethyl group. Carrying a reduced C-8 group may be of particular importance to organisms containing chlorophylld. Plant genomes also contain orthologs of both of these genes; thus, the bacterial progenitor of the chloroplast may also have contained bothbciAandbciB.

2009 ◽  
Vol 191 (16) ◽  
pp. 5057-5067 ◽  
Author(s):  
Silvia Batista ◽  
Eduardo J. Patriarca ◽  
Rosarita Tatè ◽  
Gloria Martínez-Drets ◽  
Paul R. Gill

ABSTRACT The rhizobial DctA permease is essential for the development of effective nitrogen-fixing bacteroids, which was correlated with its requirement for growth on C4-dicarboxylates. A previously described dctA mutant of Rhizobium tropici CIAT899, strain GA1 (dctA), however, was unexpectedly still able to grow on succinate as a sole carbon source but less efficiently than CIAT899. Like other rhizobial dctA mutants, GA1 was unable to grow on fumarate or malate as a carbon source and induced the formation of ineffective nodules. We report an alternative succinate uptake system identified by Tn5 mutagenesis of strain GA1 that was required for the remaining ability to transport and utilize succinate. The alternative uptake system required a three-gene cluster that is highly characteristic of a dctABD locus. The predicted permease-encoding gene had high sequence similarity with open reading frames encoding putative 2-oxoglutarate permeases (KgtP) of Ralstonia solanacearum and Agrobacterium tumefaciens. This analysis was in agreement with the requirement for this gene for optimal growth on and induction by 2-oxoglutarate. The permease-encoding gene of the alternative system was also designated kgtP in R. tropici. The dctBD-like genes in this cluster were found to be required for kgtP expression and were designated kgtSR. Analysis of a kgtP::lacZ transcriptional fusion indicated that a kgtSR-dependent promoter of kgtP was specifically induced by 2-oxoglutarate. The expression of kgtPp was found in bacteroids of nodules formed with either CIAT899 or GA1 on roots of Phaseolus vulgaris. Results suggested that 2-oxoglutarate might be transported or conceivably exported in nodules induced by R. tropici on roots of P. vulgaris.


2006 ◽  
Vol 72 (12) ◽  
pp. 7644-7651 ◽  
Author(s):  
C. A. Van Reenen ◽  
W. H. Van Zyl ◽  
L. M. T. Dicks

ABSTRACT Plantaricin 423 is a class IIa bacteriocin produced by Lactobacillus plantarum isolated from sorghum beer. It has been previously determined that plantaricin 423 is encoded by a plasmid designated pPLA4, which is now completely sequenced. The plantaricin 423 operon shares high sequence similarity with the operons of coagulin, pediocin PA-1, and pediocin AcH, with small differences in the DNA sequence encoding the mature bacteriocin peptide and the immunity protein. Apart from the bacteriocin operon, no significant sequence similarity could be detected between the DNA or translated sequence of pPLA4 and the available DNA or translated sequences of the plasmids encoding pediocin AcH, pediocin PA-1, and coagulin, possibly indicating a different origin. In addition to the bacteriocin operon, sequence analysis of pPLA4 revealed the presence of two open reading frames (ORFs). ORF1 encodes a putative mobilization (Mob) protein that is homologous to the pMV158 superfamily of mobilization proteins. Highest sequence similarity occurred between this protein and the Mob protein of L. plantarum NCDO 1088. ORF2 encodes a putative replication protein that revealed low sequence similarity to replication proteins of plasmids pLME300 from Lactobacillus fermentum and pYIT356 from Lactobacillus casei. The immunity protein of plantaricin 423 contains 109 amino acids. Although plantaricin 423 shares high sequence similarity with the pediocin PA-1 operon, no cross-reactivity was recorded between the immunity proteins of plantaricin 423 and pediocin PA-1.


2000 ◽  
Vol 182 (13) ◽  
pp. 3784-3793 ◽  
Author(s):  
Vincent J. J. Martin ◽  
William W. Mohn

ABSTRACT We have cloned and sequenced the dit gene cluster encoding enzymes of the catabolic pathway for abietane diterpenoid degradation by Pseudomonas abietaniphila BKME-9. Thedit gene cluster is located on a 16.7-kb DNA fragment containing 13 complete open reading frames (ORFs) and 1 partial ORF. The genes ditA1A2A3 encode the α and β subunits and the ferredoxin of the dioxygenase which hydroxylates 7-oxodehydroabietic acid to 7-oxo-11,12-dihydroxy-8,13-abietadien acid. The dioxygenase mutant strain BKME-941 (ditA1::Tn5) did not grow on nonaromatic abietanes, and transformed palustric and abietic acids to 7-oxodehydroabietic acid in cell suspension assays. Thus, nonaromatic abietanes are aromatized prior to further degradation. Catechol 2,3-dioxygenase activity of xylEtranscriptional fusion strains showed induction of ditA1and ditA3 by abietic, dehydroabietic, and 7-oxodehydroabietic acids, which support the growth of strain BKME-9, as well as by isopimaric and 12,14-dichlorodehydroabietic acids, which are diterpenoids that do not support the growth of strain BKME-9. In addition to the aromatic-ring-hydroxylating dioxygenase genes, thedit cluster includes ditC, encoding an extradiol ring cleavage dioxygenase, and ditR, encoding an IclR-type transcriptional regulator. Although ditR is not strictly required for the growth of strain BKME-9 on abietanes, aditR::Kmr mutation in aditA3::xylE reporter strain demonstrated that it encodes an inducer-dependent transcriptional activator of ditA3. An ORF with sequence similarity to genes encoding permeases (ditE) is linked with genes involved in abietane degradation.


2015 ◽  
Vol 59 (8) ◽  
pp. 4577-4583 ◽  
Author(s):  
Elena Gómez-Sanz ◽  
Sybille Schwendener ◽  
Andreas Thomann ◽  
Stefanie Gobeli Brawand ◽  
Vincent Perreten

ABSTRACTA methicillin-resistantmecB-positiveMacrococcus caseolyticus(strain KM45013) was isolated from the nares of a dog with rhinitis. It contained a novel 39-kb transposon-defective completemecB-carrying staphylococcal cassette chromosomemecelement (SCCmecKM45013). SCCmecKM45013contained 49 coding sequences (CDSs), was integrated at the 3′ end of the chromosomalorfXgene, and was delimited at both ends by imperfect direct repeats functioning as integration site sequences (ISSs). SCCmecKM45013presented two discontinuous regions of homology (SCCmeccoverage of 35%) to the chromosomal and transposon Tn6045-associated SCCmec-like element ofM. caseolyticusJCSC7096: (i) themecgene complex (98.8% identity) and (ii) theccr-carrying segment (91.8% identity). Themecgene complex, located at the right junction of the cassette, also carried the β-lactamase geneblaZm(mecRm-mecIm-mecB-blaZm). SCCmecKM45013contained two cassette chromosome recombinase genes,ccrAm2andccrBm2, which shared 94.3% and 96.6% DNA identity with those of the SCCmec-like element of JCSC7096 but shared less than 52% DNA identity with the staphylococcalccrABandccrCgenes. Three distinct extrachromosomal circularized elements (the entire SCCmecKM45013, ΨSCCmecKM45013lacking theccrgenes, and SCCKM45013lackingmecB) flanked by one ISS copy, as well as the chromosomal regions remaining after excision, were detected. An unconventional circularized structure carrying themecBgene complex was associated with two extensive direct repeat regions, which enclosed two open reading frames (ORFs) (ORF46 and ORF51) flanking the chromosomalmecB-carrying gene complex. This study revealedM. caseolyticusas a potential disease-associated bacterium in dogs and also unveiled an SCCmecelement carryingmecBnot associated with Tn6045in the genusMacrococcus.


2011 ◽  
Vol 77 (10) ◽  
pp. 3443-3450 ◽  
Author(s):  
Evelien M. Adriaenssens ◽  
Pieter-Jan Ceyssens ◽  
Vincent Dunon ◽  
Hans-Wolfgang Ackermann ◽  
Johan Van Vaerenbergh ◽  
...  

ABSTRACTPantoea agglomeransis a common soil bacterium used in the biocontrol of fungi and bacteria but is also an opportunistic human pathogen. It has been described extensively in this context, but knowledge of bacteriophages infecting this species is limited. Bacteriophages LIMEzero and LIMElight ofP. agglomeransare lytic phages, isolated from soil samples, belonging to thePodoviridaeand are the firstPantoeaphages of this family to be described. The double-stranded DNA (dsDNA) genomes (43,032 bp and 44,546 bp, respectively) encode 57 and 55 open reading frames (ORFs). Based on the presence of an RNA polymerase in their genomes and their overall genome architecture, these phages should be classified in the subfamily of theAutographivirinae, within the genus of the “phiKMV-like viruses.” Phylogenetic analysis of all the sequenced members of theAutographivirinaesupports the classification of phages LIMElight and LIMEzero as members of the “phiKMV-like viruses” and corroborates the subdivision into the different genera. These data expand the knowledge ofPantoeaphages and illustrate the wide host diversity of phages within the “phiKMV-like viruses.”


2012 ◽  
Vol 78 (24) ◽  
pp. 8719-8734 ◽  
Author(s):  
Mariángeles Briggiler Marcó ◽  
Josiane E. Garneau ◽  
Denise Tremblay ◽  
Andrea Quiberoni ◽  
Sylvain Moineau

ABSTRACTWe characterized twoLactobacillus plantarumvirulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eightL. plantarumstrains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least twoL. plantarumstrains, LMG9211 and WCSF1. The linear double-stranded DNA genome of thepac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that ofPediococcus damnosusphage clP1 and 77% identity with that ofL. plantarumphage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of thecos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those ofBacillusandLactobacillusstrains as well as phages. Some phage B2 genes were similar to ORFs fromL. plantarumphage LP65 of theMyoviridaefamily. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.


2013 ◽  
Vol 57 (6) ◽  
pp. 2603-2612 ◽  
Author(s):  
Narutoshi Uda ◽  
Yasuyuki Matoba ◽  
Takanori Kumagai ◽  
Kosuke Oda ◽  
Masafumi Noda ◽  
...  

ABSTRACTWe have recently cloned a DNA fragment containing a gene cluster that is responsible for the biosynthesis of an antituberculosis antibiotic,d-cycloserine. The gene cluster is composed of 10 open reading frames, designateddcsAtodcsJ. Judging from the sequence similarity between each putative gene product and known proteins, DcsC, which displays high homology to diaminopimelate epimerase, may catalyze the racemization ofO-ureidoserine. DcsD is similar toO-acetylserine sulfhydrylase, which generatesl-cysteine usingO-acetyl-l-serine with sulfide, and therefore, DcsD may be a synthase to generateO-ureido-l-serine usingO-acetyl-l-serine and hydroxyurea. DcsG, which exhibits similarity to a family of enzymes with an ATP-grasp fold, may be an ATP-dependent synthetase convertingO-ureido-d-serine intod-cycloserine. In the present study, to characterize the enzymatic functions of DcsC, DcsD, and DcsG, each protein was overexpressed inEscherichia coliand purified to near homogeneity. The biochemical function of each of the reactions catalyzed by these three proteins was verified by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and, in some cases, mass spectrometry. The results from this study demonstrate that by using a mixture of the three purified enzymes and the two commercially available substratesO-acetyl-l-serine and hydroxyurea, synthesis ofd-cycloserine was successfully attained. Thesein vitrostudies yield the conclusion that DcsD and DcsG are necessary for the syntheses ofO-ureido-l-serine andd-cycloserine, respectively. DcsD was also able to catalyze the synthesis ofl-cysteine when sulfide was added instead of hydroxyurea. Furthermore, the present study shows that DcsG can also form other cyclicd-amino acid analogs, such asd-homocysteine thiolactone.


2020 ◽  
Vol 9 (25) ◽  
Author(s):  
Wesley D. Rhinehart ◽  
Amanda J. Laidlaw ◽  
Alexis M. O’Neal ◽  
Jessica A. Toller ◽  
Miriam Segura-Totten ◽  
...  

ABSTRACT Novel mycobacteriophage XianYue was isolated in Northeast Georgia and infects Mycobacteria smegmatis mc2155. Actinobacteriophages which share at least 50% nucleotide identity are grouped into clusters, with XianYue in cluster A2. Its genome is 52,907 bp with 91 open reading frames (ORFs) and 62.9% GC content, and it shares 86.51% nucleotide identity with mycobacteriophage Trixie.


2019 ◽  
Vol 8 (32) ◽  
Author(s):  
Yen-Te Liao ◽  
Yujie Zhang ◽  
Alexandra Salvador ◽  
Vivian C. H. Wu

Escherichia phage vB_EcoM-Sa45lw, a new member of the T4-like phages, was isolated from surface water in a produce-growing area. The phage, containing double-stranded DNA with a genome size of 167,353 bp and 282 predicted open reading frames (ORFs), is able to infect generic Escherichia coli and Shiga toxin-producing E. coli O45 and O157 strains.


2019 ◽  
Vol 8 (15) ◽  
Author(s):  
Gillian Miller ◽  
Steven Tran ◽  
Rhiannon Abrahams ◽  
Daniel Bazan ◽  
Ethan Blaylock ◽  
...  

KaiHaiDragon and OneinaGillian are two bacteriophages which have been recovered from soil samples using the bacterial host Microbacterium foliorum. Their genome lengths are 52,992 bp and 61,703 bp, with 91 and 104 predicted open reading frames, respectively.


Sign in / Sign up

Export Citation Format

Share Document