scholarly journals Complex Function for SicA, a Salmonella enterica Serovar Typhimurium Type III Secretion-Associated Chaperone

2000 ◽  
Vol 182 (8) ◽  
pp. 2262-2268 ◽  
Author(s):  
Stephanie C. Tucker ◽  
Jorge E. Galán

ABSTRACT Salmonella enterica encodes a type III secretion system within a pathogenicity island located at centisome 63 that is essential for virulence. All type III secretion systems require the function of a family of low-molecular-weight proteins that aid the secretion process by acting as partitioning factors and/or secretion pilots. One such protein is SicA, which is encoded immediately upstream of the type III secreted proteins SipB and SipC. We found that the absence of SicA results in the degradation of both SipB and SipC. Interestingly, in the absence of SipC, SipB was not only stable but also secreted at wild-type levels in a sicA mutant background, indicating that SicA is not required for SipB secretion. We also found that SicA is capable of binding both SipB and SipC. These results are consistent with a SicA role as a partitioning factor for SipB and SipC, thereby preventing their premature association and degradation. We also found that introduction of a sicA null mutation results in the lack of expression of SopE, another type III-secreted protein. Such an effect was shown to be transcriptional. Introduction of a loss-of-function sipC mutation into the sicAmutant background rescued sopE expression. These results indicate that the effect of sicA on sopEexpression is indirect and most likely exerted through a regulatory factor(s) partitioned by SicA from SipC. These studies therefore describe a surprisingly complex function for the Salmonella enterica type III secretion-associated chaperone SicA.

2002 ◽  
Vol 70 (7) ◽  
pp. 3457-3467 ◽  
Author(s):  
Zoë Hindle ◽  
Steven N. Chatfield ◽  
Jo Phillimore ◽  
Matthew Bentley ◽  
Julie Johnson ◽  
...  

ABSTRACT The attenuation and immunogenicity of two novel Salmonella vaccine strains, Salmonella enterica serovar Typhi (Ty2 ΔaroC ΔssaV, designated ZH9) and S. enterica serovar Typhimurium (TML ΔaroC ΔssaV, designated WT05), were evaluated after their oral administration to volunteers as single escalating doses of 107, 108, or 109 CFU. ZH9 was well tolerated, not detected in blood, nor persistently excreted in stool. Six of nine volunteers elicited anti-serovar Typhi lipopolysaccharide (LPS) immunoglobulin A (IgA) antibody-secreting cell (ASC) responses, with three of three vaccinees receiving 108 and two of three receiving 109 CFU which elicited high-titer LPS-specific serum IgG. WT05 was also well tolerated with no diarrhea, although the administration of 108 and 109 CFU resulted in shedding in stools for up to 23 days. Only volunteers immunized with 109 CFU of WT05 mounted detectable serovar Typhimurium LPS-specific ASC responses and serum antibody responses were variable. These data indicate that mutations in type III secretion systems may provide a route to the development of live vaccines in humans and highlight significant differences in the potential use of serovars Typhimurium and Typhi.


2007 ◽  
Vol 51 (8) ◽  
pp. 2867-2876 ◽  
Author(s):  
Aurel Negrea ◽  
Eva Bjur ◽  
Sofia Eriksson Ygberg ◽  
Mikael Elofsson ◽  
Hans Wolf-Watz ◽  
...  

ABSTRACT A collection of nine salicylidene acylhydrazide compounds were tested for their ability to inhibit the activity of virulence-associated type III secretion systems (T3SSs) in Salmonella enterica serovar Typhimurium. The compounds strongly affected Salmonella pathogenicity island 1 (SPI1) T3SS-mediated invasion of epithelial cells and in vitro secretion of SPI1 invasion-associated effector proteins. The use of a SPI1 effector β-lactamase fusion protein implicated intracellular entrapment of the protein construct upon application of a salicylidene acylhydrazide, whereas the use of chromosomal transcriptional gene fusions revealed a compound-mediated transcriptional silencing of SPI1. Salicylidene acylhydrazides also affected intracellular bacterial replication in murine macrophage-like cells and blocked the transport of an epitope-tagged SPI2 effector protein. Two of the compounds significantly inhibited bacterial motility and expression of extracellular flagellin. We conclude that salicylidene acylhydrazides affect bacterial T3SS activity in S. enterica and hence could be used as lead substances when designing specific inhibitors of bacterial T3SSs in order to pharmaceutically intervene with bacterial virulence.


2007 ◽  
Vol 51 (7) ◽  
pp. 2631-2635 ◽  
Author(s):  
Debra L. Hudson ◽  
Abigail N. Layton ◽  
Terry R. Field ◽  
Alison J. Bowen ◽  
Hans Wolf-Watz ◽  
...  

ABSTRACT Type III secretion systems (T3SS) are conserved in many pathogenic gram-negative bacteria. Small molecules that specifically target T3SS in Yersinia and Chlamydia spp. have recently been identified. Here we show that two such compounds inhibit Salmonella T3SS-1, preventing secretion of T3SS-1 effectors, invasion of cultured epithelial cells, and enteritis in vivo.


2012 ◽  
Vol 2012 ◽  
pp. 1-36 ◽  
Author(s):  
Francisco Ramos-Morales

Type III secretion systems are molecular machines used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, directly into eukaryotic host cells. These proteins manipulate host signal transduction pathways and cellular processes to the pathogen’s advantage. Salmonella enterica possesses two virulence-related type III secretion systems that deliver more than forty effectors. This paper reviews our current knowledge about the functions, biochemical activities, host targets, and impact on host cells of these effectors. First, the concerted action of effectors at the cellular level in relevant aspects of the interaction between Salmonella and its hosts is analyzed. Then, particular issues that will drive research in the field in the near future are discussed. Finally, detailed information about each individual effector is provided.


2009 ◽  
Vol 77 (12) ◽  
pp. 5458-5470 ◽  
Author(s):  
Stefanie U. Hölzer ◽  
Markus C. Schlumberger ◽  
Daniela Jäckel ◽  
Michael Hensel

ABSTRACT The virulence of Salmonella enterica critically depends on the functions of two type III secretion systems (T3SS), with the Salmonella pathogenicity island 1 (SPI1)-encoded T3SS required for host cell invasion and the SPI2-T3SS enabling Salmonella to proliferate within host cells. A further T3SS is required for the assembly of the flagella. Most serovars of Salmonella also possess a lipopolysaccharide with a complex O-antigen (OAg) structure. The number of OAg units attached to the core polysaccharide varies between 16 and more than 100 repeats, with a trimodal distribution. This work investigated the correlation of the OAg length with the functions of the SPI1-T3SS and the SPI2-T3SS. We observed that the number of repeats of OAg units had no effect on bacterial motility. The interaction of Salmonella with epithelial cells was altered if the OAg structure was changed by mutations in regulators of OAg. Strains defective in synthesis of very long or long and very long OAg species showed increased translocation of a SPI1-T3SS effector protein and increased invasion. Invasion of a strain entirely lacking OAg was increased, but this mutant strain also showed increased adhesion. In contrast, translocation of a SPI2-T3SS effector protein and intracellular replication were not affected by modification of the OAg length. Mutant strains lacking the entire OAg or long and very long OAg were highly susceptible to complement killing. These observations indicate that the architecture of the outer membrane of Salmonella is balanced to permit sufficient T3SS function but also to confer optimal protection against antimicrobial defense mechanisms.


Sign in / Sign up

Export Citation Format

Share Document