scholarly journals Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion

2009 ◽  
Vol 83 (23) ◽  
pp. 12101-12107 ◽  
Author(s):  
I.-M. Yu ◽  
H. A. Holdaway ◽  
P. R. Chipman ◽  
R. J. Kuhn ◽  
M. G. Rossmann ◽  
...  

ABSTRACT Flavivirus assembles into an inert particle that requires proteolytic activation by furin to enable transmission to other hosts. We previously showed that immature virus undergoes a conformational change at low pH that renders it accessible to furin (I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. Kuhn, M. G. Rossmann, and J. Chen, Science 319:1834-1837, 2008). Here we show, using cryoelectron microscopy, that the structure of immature dengue virus at pH 6.0 is essentially the same before and after the cleavage of prM. The structure shows that after cleavage, the proteolytic product pr remains associated with the virion at acidic pH, and that furin cleavage by itself does not induce any major conformational changes. We also show by liposome cofloatation experiments that pr retention prevents membrane insertion, suggesting that pr is present on the virion in the trans-Golgi network to protect the progeny virus from fusion within the host cell.

2014 ◽  
Vol 89 (1) ◽  
pp. 743-750 ◽  
Author(s):  
Xinzheng Zhang ◽  
Ju Sheng ◽  
S. Kyle Austin ◽  
Tabitha E. Hoornweg ◽  
Jolanda M. Smit ◽  
...  

ABSTRACTFlaviviruses undergo large conformational changes during their life cycle. Under acidic pH conditions, the mature virus forms transient fusogenic trimers of E glycoproteins that engage the lipid membrane in host cells to initiate viral fusion and nucleocapsid penetration into the cytoplasm. However, the dynamic nature of the fusogenic trimer has made the determination of its structure a challenge. Here we have used Fab fragments of the neutralizing antibody DV2-E104 to stop the conformational change of dengue virus at an intermediate stage of the fusion process. Using cryo-electron microscopy, we show that in this intermediate stage, the E glycoproteins form 60 trimers that are similar to the predicted “open” fusogenic trimer.IMPORTANCEThe structure of a dengue virus has been captured during the formation of fusogenic trimers. This was accomplished by binding Fab fragments of the neutralizing antibody DV2-E104 to the virus at neutral pH and then decreasing the pH to 5.5. These trimers had an “open” conformation, which is distinct from the “closed” conformation of postfusion trimers. Only two of the three E proteins within each spike are bound by a Fab molecule at domain III. Steric hindrance around the icosahedral 3-fold axes prevents binding of a Fab to the third domain III of each E protein spike. Binding of the DV2-E104 Fab fragments prevents domain III from rotating by about 130° to the postfusion orientation and thus precludes the stem region from “zipping” together the three E proteins along the domain II boundaries into the “closed” postfusion conformation, thus inhibiting fusion.


TBEV-particles are assembled in an immature, noninfectious form in the endoplasmic reticulum by the envelopment of the viral core (containing the viral RNA) by a lipid membrane associated with two viral proteins, prM and E. Immature particles are transported through the cellular exocytic pathway and conformational changes induced by acidic pH in the trans-Golgi network allow the proteolytic cleavage of prM by furin, a cellular protease, resulting in the release of mature and infectious TBE-virions. The E protein controls cell entry by mediating attachment to as yet ill-defined receptors as well as by low-pH-triggered fusion of the viral and endosomal membrane after uptake by receptor-mediated endocytosis. Because of its key functions in cell entry, the E protein is the primary target of virus neutralizing antibodies, which inhibit these functions by different mechanisms. Although all flavivirus E proteins have a similar overall structure, divergence at the amino acid sequence level is up to 60 percent (e.g. between TBE and dengue viruses), and therefore cross-neutralization as well as (some degree of) cross-protection are limited to relatively closely related flaviviruses, such as those constituting the tick-borne encephalitis serocomplex.


2003 ◽  
Vol 77 (5) ◽  
pp. 2981-2989 ◽  
Author(s):  
Xinyong Zhang ◽  
Martin Fugère ◽  
Robert Day ◽  
Margaret Kielian

ABSTRACT The alphavirus Semliki Forest virus (SFV) infects cells via a low-pH-dependent membrane fusion reaction mediated by the E1 envelope protein. Fusion is regulated by the interaction of E1 with the receptor-binding protein E2. E2 is synthesized as a precursor termed “p62,” which forms a stable heterodimer with E1 and is processed late in the secretory pathway by a cellular furin-like protease. Once processing to E2 occurs, the E1/E2 heterodimer is destabilized so that it is more readily dissociated by exposure to low pH, allowing fusion and infection. We have used FD11 cells, a furin-deficient CHO cell line, to characterize the processing of p62 and its role in the control of virus fusion and infection. p62 was not cleaved in FD11 cells and cleavage was restored in FD11 cell transfectants expressing human furin. Studies of unprocessed virus produced in FD11 cells (wt/p62) demonstrated that the p62 protein was efficiently cleaved by purified furin in vitro, without requiring prior exposure to low pH. wt/p62 virus particles were also processed during their endocytic uptake in furin-containing cells, resulting in more efficient virus infection. wt/p62 virus was compared with mutant L, in which p62 cleavage was blocked by mutation of the furin-recognition motif. wt/p62 and mutant L had similar fusion properties, requiring a much lower pH than control virus to trigger fusion and fusogenic E1 conformational changes. However, the in vivo infectivity of mutant L was more strongly inhibited than that of wt/p62, due to additional effects of the mutation on virus-cell binding.


1997 ◽  
Vol 45 (3) ◽  
pp. 425-436 ◽  
Author(s):  
Shigeyasu Tanaka ◽  
Takao Yora ◽  
Kazuhisa Nakayama ◽  
Kinji Inoue ◽  
Kazumasa Kurosumi

Using antibodies specific for pro-opiomelanocortin (POMC), amidated joining peptide (JP), and the prohormone convertase PC1, we showed immunocytochemically that PC1 in a corticotrophic tumor cell line, AtT-20, was co-localized either with POMC or with amidated JP in secretory granules, and also confirmed that POMC was cleaved mainly in secretory granules. Analysis using DAMP (3- [2,4-dinitroanilino]-3'-amino- N-methyldipropylamine) as the pH probe suggested a correlation between POMC processing and acidic pH in the secretory granules. Bafilomycin A1, a specific inhibitor of vacuolar-type H+-AT-Pase, completely inhibited POMC processing and caused constitutive secretion of the unprocessed precursor. By contrast, chloroquine, a weak base that is known to neutralize acidic organelles, was unable to inhibit POMC processing. Electron microscopic analysis revealed that, in AtT-20 cells treated with bafilomycin A1, the trans-Golgi cisternae were dilated and few secretory granules were present in the cytoplasm. These observations suggest that acidic pH provides a favorable environment for proteolytic processing of POMC by PC1 but is not required, and that integrity of the trans-Golgi network and sorting of POMC into secretory granules are important for POMC processing. (J Histochem Cytochem 45:425–436, 1997)


Author(s):  
Alison E Stout ◽  
Qinghua Guo ◽  
Jean K Millet ◽  
Gary R Whittaker

With a presumed origin in bats, the COVID-19 pandemic has been a major source of morbidity and mortality in the humanpopulation, and the causative agent, SARS-CoV-2, aligns most closely at the genome level with the bat coronavirusesRaBtCoV4991/RaTG13 and RmYN02. The ability of bats to provide reservoirs of numerous viruses in addition to coronavirusesremains an active area of research. Unique aspects of the physiology of the chiropteran immune system may contributeto the ability of bats to serve as viral reservoirs. The coronavirus spike protein plays important roles in viral pathogenesis and the immune response. Although much attention has focused on the spike receptor-binding domain, a unique aspect of SARS-CoV-2 as compared with its closest relatives is the presence of a furin cleavage site in the S1–S2 region of the spike protein. Proteolytic activation is likely an important feature that allows SARS-CoV-2—and other coronaviruses—to overcome the species barriers and thus cause human disease. The diversity of bat species limits the ability to draw broad conclusions about viral pathogenesis, but comparisons across species and with reference to humans and other susceptible mammals may guide future research in this regard.


2018 ◽  
Vol 74 (5) ◽  
pp. 480-489 ◽  
Author(s):  
Marina Plaza-Garrido ◽  
M. Carmen Salinas-Garcia ◽  
Ana Camara-Artigas

The structure of orthorhombic lysozyme has been obtained at 298 K and pH 4.5 using sodium chloride as the precipitant and in the presence of sodium phosphate at a concentration as low as 5 mM. Crystals belonging to space groupP212121(unit-cell parametersa= 30,b= 56,c= 73 Å, α = β = γ = 90.00°) diffracted to a resolution higher than 1 Å, and the high quality of these crystals permitted the identification of a phosphate ion bound to Arg14 and His15. The binding of this ion produces long-range conformational changes affecting the loop containing Ser60–Asn74. The negatively charged phosphate ion shields the electrostatic repulsion of the positively charged arginine and histidine residues, resulting in higher stability of the phosphate-bound lysozyme. Additionally, a low-humidity orthorhombic variant was obtained at pH 4.5, and comparison with those previously obtained at pH 6.5 and 9.5 shows a 1.5 Å displacement of the fifth α-helix towards the active-site cavity, which might be relevant to protein function. Since lysozyme is broadly used as a model protein in studies related to protein crystallization and amyloid formation, these results indicate that the interaction of some anions must be considered when analysing experiments performed at acidic pH values.


2017 ◽  
Vol 19 (26) ◽  
pp. 17143-17155 ◽  
Author(s):  
Dmitry Molodenskiy ◽  
Evgeny Shirshin ◽  
Tatiana Tikhonova ◽  
Andrey Gruzinov ◽  
Georgy Peters ◽  
...  

Temperature-induced oligomerization of albumin before and after protein melting was studied using SAXS and interpreted in terms of interaction potential.


2015 ◽  
Vol 89 (10) ◽  
pp. 5318-5329 ◽  
Author(s):  
Ivelin S. Georgiev ◽  
M. Gordon Joyce ◽  
Yongping Yang ◽  
Mallika Sastry ◽  
Baoshan Zhang ◽  
...  

ABSTRACTSimilar to other type I fusion machines, the HIV-1 envelope glycoprotein (Env) requires proteolytic activation; specifically, cleavage of a gp160 precursor into gp120 and gp41 subunits creates an N-terminal gp41 fusion peptide and permits folding from an immature uncleaved state to a mature closed state. While the atomic-level consequences of cleavage for HIV-1 Env are still being determined, the uncleaved state is antigenically distinct from the mature closed state, and cleavage has been reported to be essential for mimicry of the mature viral spike by soluble versions of Env. Here we report the redesign of a current state-of-the-art soluble Env mimic, BG505.SOSIP, to make it cleavage independent. Specifically, we replaced the furin cleavage site between gp120 and gp41 with Gly-Ser linkers of various lengths. The resultant linked gp120-gp41 constructs, termed single-chain gp140 (sc-gp140), exhibited different levels of structural and antigenic mimicry of the parent cleaved BG505.SOSIP. When constructs were subjected to negative selection to remove subspecies recognized by poorly neutralizing antibodies, trimers of high antigenic mimicry of BG505.SOSIP could be obtained; negative-stain electron microscopy indicated these to resemble the mature closed state. Higher proportions of BG505.SOSIP-trimer mimicry were observed in sc-gp140s with linkers of 6 or more residues, with a linker length of 15 residues exhibiting especially promising traits. Overall, flexible linkages between gp120 and gp41 in BG505.SOSIP can thus substitute for cleavage, and sc-gp140s that closely mimicked the vaccine-preferred mature closed state of Env could be obtained.IMPORTANCEThe trimeric HIV-1 envelope glycoprotein (Env) is the sole target of virus-directed neutralizing antibody responses and a primary focus of vaccine design. Soluble mimics of Env have proven challenging to obtain and have been thought to require proteolytic cleavage into two-component subunits, gp120 and gp41, to achieve structural and antigenic mimicry of mature Env spikes on virions. Here we show that replacement of the cleavage site between gp120 and gp41 in a lead soluble gp140 construct, BG505.SOSIP, with flexible linkers can result in molecules that do not require cleavage to fold efficiently into the mature closed state. Our results provide insights into the impact of cleavage on HIV-1 Env folding. In some contexts such as genetic immunization, optimized cleavage-independent soluble gp140 constructs may have utility over the parental BG505.SOSIP, as they would not require furin cleavage to achieve mimicry of mature Env spikes on virions.


Sign in / Sign up

Export Citation Format

Share Document