viral reservoirs
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 99)

H-INDEX

30
(FIVE YEARS 7)

2022 ◽  
Vol 119 (2) ◽  
pp. e2114884119
Author(s):  
Shumei Wang ◽  
Li Zhao ◽  
Xiaowei Zhang ◽  
Jingjing Zhang ◽  
Hong Shang ◽  
...  

Myeloid lineage cells such as macrophages and dendritic cells (DCs), targeted by HIV-1, are important vehicles for virus dissemination through the body as well as viral reservoirs. Compared to activated lymphocytes, myeloid cells are collectively more resistant to HIV-1 infection. Here we report that NRP-1, encoding transmembrane protein neuropilin-1, is highly expressed in macrophages and DCs but not CD4+ T cells, serving as an anti-HIV factor to inhibit the infectivity of HIV-1 progeny virions. Silencing NRP-1 enhanced the transmission of HIV-1 in macrophages and DCs significantly and increased the infectivity of the virions produced by these cells. We further demonstrated that NRP-1 was packaged into the progeny virions to inhibit their ability to attach to target cells, thus reducing the infectivity of the virions. These data indicate that NRP-1 is a newly identified antiviral protein highly produced in both macrophages and DCs that inhibit HIV-1 infectivity; thus, NRP-1 may be a novel therapeutic strategy for the treatment of HIV-1 infection.


2021 ◽  
Vol 20 ◽  
Author(s):  
William Kalada ◽  
Theodore James Cory

Purpose of Review: There have been significant developments in the treatment of people living with HIV-1/AIDS with current antiretroviral therapies; however, these developments have not been able to achieve a functional or sterilizing cure for HIV-1. While there are multiple barriers, one such barrier is the existence of pharmacological sanctuaries and viral reservoirs where the concentration of antiretrovirals is suboptimal, which includes the gut-associated lymphoid tissue, central nervous system, lymph nodes, and myeloid cells. This review will focus on illustrating the significance of these sanctuaries, specific barriers to optimal antiretroviral concentrations in each of these sites, and potential strategies to overcome these barriers. Recent Findings: Research and studies have shown that a uniform antiretroviral distribution is not achieved with current therapies. This may allow for low-level replication associated with low antiretroviral concentrations in these sanctuaries/reservoirs. Many methods are being investigated to increase antiretroviral concentrations in these sites, such as blocking transporting enzymes functions, modulating transporter expression and nanoformulations of current antiretrovirals. While these methods have been shown to increase antiretroviral concentrations in the sanctuaries/reservoirs, no functional or sterilizing cure has been achieved due to these approaches. Summary: New methods of increasing antiretroviral concentrations at the specific sites of HIV-1 replication has the potential to target cellular reservoirs. In order to optimize antiretroviral distribution into viral sanctuaries/reservoirs, additional research is needed.


2021 ◽  
Author(s):  
Nolwenn M Dheilly ◽  
Yannick Blanchard ◽  
Karyna Rosario ◽  
Pierrick Lucas

Because parasites have an inextricable relationship with their host, they have the potential to serve as viral reservoirs or facilitate virus host-shifts. Yet, little is known about viruses infecting parasitic hosts except for blood-feeding arthropods that are well-known vectors of zoonotic viruses. Herein we uncover viruses of flatworms (Phylum Platyhelminthes, group Neodermata) that specialize in parasitizing vertebrates and their ancestral free-living relatives. We discovered 115 novel viral sequences, including 1 in Macrostomorpha, 5 in Polycladida, 44 in Tricladida, 1 in Monogenea, 15 in Cestoda and 49 in Trematoda, through data mining. The majority of newly identified viruses constitute novel families or genera. Phylogenetic analyses show that the virome of flatworms changed dramatically during the transition of Neodermatans to a parasitic lifestyle. Most Neodermatan viruses seem to co-diversify with their host , with the exception of rhabdoviruses which may switch host more often, based on phylogenetic relationships. Neodermatan rhabodviruses also have an ancestral position to vertebrate-associated viruses, including Lyssaviruses, suggesting that vertebrate rhabdoviruses emerged from a flatworm rhabdovirus in a parasitized host. This study reveals an extensive diversity of viruses in Platyhelminthes and highlights the need to evaluate the role of viral infection in flatworm-associated diseases.


2021 ◽  
Vol 9 (12) ◽  
pp. 2537
Author(s):  
Ana Borrajo ◽  
Valentina Svicher ◽  
Romina Salpini ◽  
Michele Pellegrino ◽  
Stefano Aquaro

The chronic infection established by the human immunodeficiency virus 1 (HIV-1) produces serious CD4+ T cell immunodeficiency despite the decrease in HIV-1 ribonucleic acid (RNA) levels and the raised life expectancy of people living with HIV-1 (PLWH) through treatment with combined antiretroviral therapies (cART). HIV-1 enters the central nervous system (CNS), where perivascular macrophages and microglia are infected. Serious neurodegenerative symptoms related to HIV-associated neurocognitive disorders (HAND) are produced by infection of the CNS. Despite advances in the treatment of this infection, HAND significantly contribute to morbidity and mortality globally. The pathogenesis and the role of inflammation in HAND are still incompletely understood. Principally, growing evidence shows that the CNS is an anatomical reservoir for viral infection and replication, and that its compartmentalization can trigger the evolution of neurological damage and thus make virus eradication more difficult. In this review, important concepts for understanding HAND and neuropathogenesis as well as the viral proteins involved in the CNS as an anatomical reservoir for HIV infection are discussed. In addition, an overview of the recent advancements towards therapeutic strategies for the treatment of HAND is presented. Further neurological research is needed to address neurodegenerative difficulties in people living with HIV, specifically regarding CNS viral reservoirs and their effects on eradication.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010105
Author(s):  
Vishakha Sharma ◽  
Matthew Creegan ◽  
Andrey Tokarev ◽  
Denise Hsu ◽  
Bonnie M. Slike ◽  
...  

HIV-1 replication within the central nervous system (CNS) impairs neurocognitive function and has the potential to establish persistent, compartmentalized viral reservoirs. The origins of HIV-1 detected in the CNS compartment are unknown, including whether cells within the cerebrospinal fluid (CSF) produce virus. We measured viral RNA+ cells in CSF from acutely infected macaques longitudinally and people living with early stages of acute HIV-1. Active viral transcription (spliced viral RNA) was present in CSF CD4+ T cells as early as four weeks post-SHIV infection, and among all acute HIV-1 specimens (N = 6; Fiebig III/IV). Replication-inactive CD4+ T cell infection, indicated by unspliced viral RNA in the absence of spliced viral RNA, was even more prevalent, present in CSF of >50% macaques and human CSF at ~10-fold higher frequency than productive infection. Infection levels were similar between CSF and peripheral blood (and lymph nodes in macaques), indicating comparable T cell infection across these compartments. In addition, surface markers of activation were increased on CSF T cells and monocytes and correlated with CSF soluble markers of inflammation. These studies provide direct evidence of HIV-1 replication in CD4+ T cells and broad immune activation in peripheral blood and the CNS during acute infection, likely contributing to early neuroinflammation and reservoir seeding. Thus, early initiation of antiretroviral therapy may not be able to prevent establishment of CNS viral reservoirs and sources of long-term inflammation, important targets for HIV-1 cure and therapeutic strategies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Callie Levinger ◽  
JNatalie Howard ◽  
Jie Cheng ◽  
Pingtao Tang ◽  
Amit Joshi ◽  
...  

AbstractHuman immunodeficiency virus-1 (HIV-1) persistence in the presence of antiretroviral therapy (ART) has halted the development of curative strategies. Measuring HIV persistence is complex due to the low frequency of cells containing virus in vivo. Most of the commercially available assays to date measure nucleic acid. These assays have the advantage of being highly sensitive and allow for the analysis of sequence diversity, intactness of the HIV genome or evaluation of diverse RNA species. However, these assays are limited in evaluating translational competent viral reservoirs. In here, we developed an ultrasensitive p24 ELISA that uses the Simoa planar array technology that can detect HIV-1 virions and HIV-1 infected cell with limit of detection similar to nucleic acid assays. Furthermore, the assay is optimized to measure very low levels of p24 in different biological fluids without a major loss of sensitivity or reproducibility. Our results demonstrate that the ‘homebrew’ planar p24 ELISA immunoassay is a broadly applicable new tool to evaluate HIV persistence in diverse biological fluids and cells.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2398
Author(s):  
Xiaolei Wang ◽  
Widade Ziani ◽  
Ronald S. Veazey ◽  
Huanbin Xu

The HIV reservoir size in target CD4+ T cells during primary infection remains unknown. Here, we sorted peripheral and intestinal CD4+ T cells and quantified the levels of cell-associated SIV RNA and DNA in rhesus macaques within days of SIVmac251 inoculation. As a major target cell of HIV/SIV, CD4+ T cells in both tissues contained a large amount of SIV RNA and DNA at day 8–13 post-SIV infection, in which productive SIV RNA highly correlated with the levels of cell-associated SIV DNA. Memory CD4+ T cells had much higher viral RNA and DNA than naïve subsets, yet memory CD4+ T cells co-expressing CCR5 had no significant reservoir size compared with those that were CCR5-negative in blood and intestine. Collectively, memory CD4+ T cells appear to be the major targets for primary infection, and viral reservoirs are equally distributed in systemic and lymphoid compartments in acutely SIV-infected macaques.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hasifa Nampala ◽  
Matylda Jablonska-Sabuka ◽  
Martin Singull

The biggest challenge of treating HIV is rampant liver-related morbidity and mortality. This is, to some extent, attributed to hepatocytes acting as viral reservoirs to both HIV and HBV. Viral reservoirs harbour latent provirus, rendering it inaccessible by combinational antiretroviral therapy (cART) that is specific to actively proliferating virus. Latency reversal agents (LRA) such as Shock and kill or lock and block, aiming at activating the latently infected cells, have been developed. However, they are CD4+ cell-specific only. There is evidence that the low replication level of HIV in hepatocytes is mainly due to the latency of the provirus in these cells. LRA are developed to reduce the number of latently infected cells; however, the impact of the period viral latency in hepatocytes especially, during HIV/HBV coinfection, needs to be investigated. Viral coinfection coupled with lifelong treatment of HIV/HBV necessitates investigation for the optimal control strategy. We propose a coinfection mathematical model with delay and use optimal control theory to analyse the effect of viral latency in hepatocytes on the dynamics of HIV/HBV coinfection. Analytical results indicate that HBV cannot take a competitive exclusion against HIV; thus, the coinfection endemic equilibrium implies chronic HBV in HIV-infected patients. Numerical and analytical results indicate that both HIV and HBV viral loads are higher with longer viral latency period in hepatocytes, which indicates the need to upgrade LRA to other non-CD4+ cell viral reservoirs. Higher viral load caused by viral latency coupled with the effects of cART partly explains why liver-related complications are the leading cause of mortality in HIV-infected persons.


mBio ◽  
2021 ◽  
Author(s):  
F. Harrison Omondi ◽  
Hanwei Sudderuddin ◽  
Aniqa Shahid ◽  
Natalie N. Kinloch ◽  
Bradley R. Jones ◽  
...  

HIV therapy is lifelong because integrated, replication-competent viral copies persist within long-lived cells. To cure HIV, we need to understand when these viral reservoirs form, how large and genetically diverse they are, and how long they endure.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhenhua Zhang ◽  
Wim Trypsteen ◽  
Marc Blaauw ◽  
Xiaojing Chu ◽  
Sofie Rutsaert ◽  
...  

Abstract Background Combination antiretroviral treatment (cART) cannot eradicate HIV-1 from the body due to the establishment of persisting viral reservoirs which are not affected by therapy and reinitiate new rounds of HIV-1 replication after treatment interruption. These HIV-1 reservoirs mainly comprise long-lived resting memory CD4+ T cells and are established early after infection. There is a high variation in the size of these viral reservoirs among virally suppressed individuals. Identification of host factors that contribute to or can explain this observed variation could open avenues for new HIV-1 treatment strategies. Methods In this study, we conducted a genome-wide quantitative trait locus (QTL) analysis to probe functionally relevant genetic variants linked to levels of cell-associated (CA) HIV-1 DNA, CA HIV-1 RNA, and RNA:DNA ratio in CD4+ T cells isolated from blood from a cohort of 207 (Caucasian) people living with HIV-1 (PLHIV) on long-term suppressive antiretroviral treatment (median = 6.6 years). CA HIV-1 DNA and CA HIV-1 RNA levels were measured with corresponding droplet digital PCR (ddPCR) assays, and genotype information of 522,455 single-nucleotide variants was retrieved via the Infinium Global Screening array platform. Results The analysis resulted in one significant association with CA HIV-1 DNA (rs2613996, P < 5 × 10−8) and two suggestive associations with RNA:DNA ratio (rs7113204 and rs7817589, P < 5 × 10−7). Then, we prioritized PTDSS2, IRF7, RNH1, and DEAF1 as potential HIV-1 reservoir modifiers and validated that higher expressions of IRF7 and RNH1 were accompanied by rs7113204-G. Moreover, RNA:DNA ratio, indicating relative HIV-1 transcription activity, was lower in PLHIV carrying this variant. Conclusions The presented data suggests that the amount of CA HIV-1 DNA and RNA:DNA ratio can be influenced through PTDSS2, RNH1, and IRF7 that were anchored by our genome-wide association analysis. Further, these observations reveal potential host genetic factors affecting the size and transcriptional activity of HIV-1 reservoirs and could indicate new targets for HIV-1 therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document