scholarly journals Determinants of Syncytium Formation in Microglia by Human Immunodeficiency Virus Type 1: Role of the V1/V2 Domains

2000 ◽  
Vol 74 (2) ◽  
pp. 693-701 ◽  
Author(s):  
Joseph T. C. Shieh ◽  
Julio Martín ◽  
Gordon Baltuch ◽  
Michael H. Malim ◽  
Francisco González-Scarano

ABSTRACT Microglia are the main reservoir for human immunodeficiency virus type 1 (HIV-1) in the central nervous system (CNS), and multinucleated giant cells, the result of fusion of HIV-1-infected microglia and brain macrophages, are the neuropathologic hallmark of HIV dementia. One potential explanation for the formation of syncytia is viral adaptation for these CD4+ CNS cells. HIV-1BORI-15, a virus adapted to growth in microglia by sequential passage in vitro, mediates high levels of fusion and replicates more efficiently in microglia and monocyte-derived-macrophages than its unpassaged parent (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. Gonzalez-Scarano, J. Virol. 70:7654–7662, 1996). Since the interaction between the viral envelope glycoprotein and CD4 and the chemokine receptor mediates fusion and plays a key role in tropism, we have analyzed the HIV-1BORI-15 env as a fusogen and in recombinant and pseudotyped viruses. Its syncytium-forming phenotype is not the result of a switch in coreceptor use but rather of the HIV-1BORI-15envelope-mediated fusion of CD4+CCR5+ cells with greater efficiency than that of its parental strain, either by itself or in the context of a recombinant virus. Genetic analysis indicated that the syncytium-forming phenotype was due to four discrete amino acid differences in V1/V2, with a single-amino-acid change between the parent and the adapted virus (E153G) responsible for the majority of the effect. Additionally, HIV-1BORI-15 env-pseudotyped viruses were less sensitive to decreases in the levels of CD4 on transfected 293T cells, leading to the hypothesis that the differences in V1/V2 alter the interaction between this envelope and CD4 or CCR5, or both. In sum, the characterization of the envelope of HIV-1BORI-15, a highly fusogenic glycoprotein with genetic determinants in V1/V2, may lead to a better understanding of the relationship between HIV replication and syncytium formation in the CNS and of the importance of this region of gp120 in the interaction with CD4 and CCR5.

2002 ◽  
Vol 76 (18) ◽  
pp. 9152-9164 ◽  
Author(s):  
Manuel Llano ◽  
Tara Kelly ◽  
Maria Vanegas ◽  
Mary Peretz ◽  
Timothy E. Peterson ◽  
...  

ABSTRACT Caveolin-1 (Cav-1) is a major protein constituent of caveolae, a type of plasma membrane raft. We observed that coexpression of human Cav-1 with human immunodeficiency virus type 1 (HIV-1) blocked virion production from cells that are ordinarily highly permissive. Further investigation showed that this effect is specific, occurs at low ratios of Cav-1 to HIV-1 DNA, depends on expression of Cav-1 protein, and involves severely impaired expression of HIV-1 proteins. Cav-1 also blocked HIV-2 expression. In contrast, Cav-1 did not inhibit protein expression by a paramyxovirus and did not induce apoptosis or affect cellular morphology, cell viability, or cell cycle progression. Although only small amounts of HIV-1 virions were released from Cav-1-transfected cells, these were fully infectious. Deletion mutagenesis showed that the C-terminal 78 residues were as active as the full-length (178-amino-acid) protein in producing the block. In contrast, the 100 most N-terminal amino acids of Cav-1, which include the previously identified oligomerization and scaffolding domains, were shown to be dispensable. Study of single-amino-acid-exchange mutants of Cav-1 established that palmitoylation was not required. Additional deletion mutants then identified the hydrophobic, membrane-associated domain (residues 101 to 135) as the main determinant. Cellular distribution of wild-type and mutant proteins correlated with ability to block HIV-1 expression. Finally, Cav-2 also blocked HIV-1 expression. These data show that coexpression of caveolins can markedly inhibit expression of HIV proviral DNA and establish that the inhibition is mediated by the hydrophobic, membrane-associated domain.


2006 ◽  
Vol 80 (14) ◽  
pp. 7169-7178 ◽  
Author(s):  
Robert A. Smith ◽  
Donovan J. Anderson ◽  
Bradley D. Preston

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) contains four structural motifs (A, B, C, and D) that are conserved in polymerases from diverse organisms. Motif B interacts with the incoming nucleotide, the template strand, and key active-site residues from other motifs, suggesting that motif B is an important determinant of substrate specificity. To examine the functional role of this region, we performed “random scanning mutagenesis” of 11 motif B residues and screened replication-competent mutants for altered substrate analog sensitivity in culture. Single amino acid replacements throughout the targeted region conferred resistance to lamivudine and/or hypersusceptibility to zidovudine (AZT). Substitutions at residue Q151 increased the sensitivity of HIV-1 to multiple nucleoside analogs, and a subset of these Q151 variants was also hypersusceptible to the pyrophosphate analog phosphonoformic acid (PFA). Other AZT-hypersusceptible mutants were resistant to PFA and are therefore phenotypically similar to PFA-resistant variants selected in vitro and in infected patients. Collectively, these data show that specific amino acid replacements in motif B confer broad-spectrum hypersusceptibility to substrate analog inhibitors. Our results suggest that motif B influences RT-deoxynucleoside triphosphate interactions at multiple steps in the catalytic cycle of polymerization.


2005 ◽  
Vol 79 (16) ◽  
pp. 10237-10246 ◽  
Author(s):  
Sabine Lohrengel ◽  
Felix Hermann ◽  
Isabel Hagmann ◽  
Heike Oberwinkler ◽  
Laura Scrivano ◽  
...  

ABSTRACT The expression of a membrane-anchored gp41-derived peptide (M87) has been shown to confer protection from infection through human immunodeficiency virus type 1 (HIV-1) (Hildinger et al., J. Virol. 75:3038-3042, 2001). In an effort to characterize the mechanism of action of this membrane-anchored peptide in comparison to the soluble peptide T-20, we selected resistant variants of HIV-1NL4-3 and HIV-1BaL by serial virus passage using PM1 cells stably expressing peptide M87. Sequence analysis of the resistant isolates showed different patterns of selected point mutations in heptad repeat regions 1 and 2 (HR1 and HR2, respectively) for the two viruses analyzed. For HIV-1NL4-3 a single amino acid change at position 33 in HR1 (L33S) was selected, whereas for HIV-1BaL the majority of the sequences obtained showed two amino acid changes, one in HR1 and one in HR2 (I48V/N126K). In both selections the most important contiguous 3-amino-acid sequence, GIV, within HR1, associated with resistance to soluble T-20, was not changed. Site-directed mutagenesis studies confirmed the importance of the characterized point mutations to confer resistance to M87 as well as to soluble T-20 and T-649. Replication capacity and dual-color competition assays revealed that the double mutation I48V/N126K in HIV-1BaL results in a strong reduction of viral fitness, whereas the L33S mutation in HIV-1NL4-3 did enhance viral fitness compared to the respective parental viruses. However, the selected point mutations did not confer resistance to the more recently described optimized membrane-anchored fusion inhibitor M87o (Egelhofer et al., J. Virol. 78:568-575, 2004), strengthening the importance of this novel antiviral concept for gene therapy approaches.


2000 ◽  
Vol 74 (9) ◽  
pp. 4361-4376 ◽  
Author(s):  
Louis Alexander ◽  
Emma Weiskopf ◽  
Thomas C. Greenough ◽  
Nathan C. Gaddis ◽  
Marcy R. Auerbach ◽  
...  

ABSTRACT Factors accounting for long-term nonprogression may include infection with an attenuated strain of human immunodeficiency virus type 1 (HIV-1), genetic polymorphisms in the host, and virus-specific immune responses. In this study, we examined eight individuals with nonprogressing or slowly progressing HIV-1 infection, none of whom were homozygous for host-specific polymorphisms (CCR5-Δ32, CCR2-64I, andSDF-1-3′A) which have been associated with slower disease progression. HIV-1 was recovered from seven of the eight, and recovered virus was used for sequencing the full-length HIV-1 genome; full-length HIV-1 genome sequences from the eighth were determined following amplification of viral sequences directly from peripheral blood mononuclear cells (PBMC). Longitudinal studies of one individual with HIV-1 that consistently exhibited a slow/low growth phenotype revealed a single amino acid deletion in a conserved region of the gp41 transmembrane protein that was not seen in any of 131 envelope sequences in the Los Alamos HIV-1 sequence database. Genetic analysis also revealed that five of the eight individuals harbored HIV-1 with unusual 1- or 2-amino-acid deletions in the Gag sequence compared to subgroup B Gag consensus sequences. These deletions in Gag have either never been observed previously or are extremely rare in the database. Three individuals had deletions in Nef, and one had a 4-amino-acid insertion in Vpu. The unusual polymorphisms in Gag, Env, and Nef described here were also found in stored PBMC samples taken 3 to 11 years prior to, or in one case 4 years subsequent to, the time of sampling for the original sequencing. In all, seven of the eight individuals exhibited one or more unusual polymorphisms; a total of 13 unusual polymorphisms were documented in these seven individuals. These polymorphisms may have been present from the time of initial infection or may have appeared in response to immune surveillance or other selective pressures. Our results indicate that unusual, difficult-to-revert polymorphisms in HIV-1 can be found associated with slow progression or nonprogression in a majority of such cases.


2006 ◽  
Vol 80 (16) ◽  
pp. 7939-7951 ◽  
Author(s):  
Anjali Joshi ◽  
Kunio Nagashima ◽  
Eric O. Freed

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) Gag precursor protein Pr55Gag drives the assembly and release of virus-like particles in the infected cell. The capsid (CA) domain of Gag plays an important role in these processes by promoting Gag-Gag interactions during assembly. The C-terminal domain (CTD) of CA contains two dileucine-like motifs (L189/L190 and I201/L202) implicated in regulating the localization of Gag to multivesicular bodies (MVBs). These dileucine-like motifs are located in the vicinity of the CTD dimer interface, a region of CA critical for Gag-Gag interactions during virus assembly and CA-CA interactions during core formation. To study the importance of the CA dileucine-like motifs in various aspects of HIV-1 replication, we introduced a series of mutations into these motifs in the context of a full-length, infectious HIV-1 molecular clone. CA mutants LL189,190AA and IL201,202AA were both severely impaired in virus particle production because of a variety of defects in the binding of Gag to membrane, Gag multimerization, and CA folding. In contrast to the model suggesting that the CA dileucine-like motifs regulate MVB targeting, the IL201,202AA mutation did not alter Gag localization to the MVB in either HeLa cells or macrophages. Revertants of single-amino-acid substitution mutants were obtained that no longer contained dileucine-like motifs but were nevertheless fully replication competent. The varied phenotypes of the mutants reported here provide novel insights into the interplay among Gag multimerization, membrane binding, virus assembly, CA dimerization, particle maturation, and virion infectivity.


2009 ◽  
Vol 83 (19) ◽  
pp. 9875-9889 ◽  
Author(s):  
Elodie Beaumont ◽  
Daniela Vendrame ◽  
Bernard Verrier ◽  
Emmanuelle Roch ◽  
François Biron ◽  
...  

ABSTRACT Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs). The strong conservation of CT length in primary isolates of HIV-1 suggests that this factor plays a key role in viral replication and persistence in infected patients. However, we report here the emergence and dominance of a primary HIV-1 variant carrying a natural 20-amino-acid truncation of the CT in vivo. We demonstrated that this truncation was deleterious for viral replication in cell culture. We then identified a compensatory amino acid substitution in the matrix protein that reversed the negative effects of CT truncation. The loss or rescue of infectivity depended on the level of Env incorporation into virus particles. Interestingly, we found that a virus mutant with defective Env incorporation was able to spread by cell-to-cell transfer. The effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by in vitro studies based on T-cell laboratory-adapted virus mutants, but we provide here the first demonstration of the natural occurrence of similar mechanisms in an infected patient. Our findings provide insight into the potential of HIV-1 to evolve in vivo and its ability to overcome major structural alterations.


1993 ◽  
Vol 177 (4) ◽  
pp. 949-954 ◽  
Author(s):  
J H Simon ◽  
C Somoza ◽  
G A Schockmel ◽  
M Collin ◽  
S J Davis ◽  
...  

CD4 is the primary receptor for the human immunodeficiency virus type 1 (HIV-1). Early mutational studies implicated a number of residues of CD4, centered in the region 41-59, in binding to gp120. However, further mutational analyses, together with studies using inhibitory antibodies or CD4-derived peptides, have suggested that other regions of CD4 are also involved in binding or postbinding events during infection. To resolve these ambiguities, we used rat CD4 mutants in which particular regions were replaced with the corresponding sequence of human CD4. We have previously shown that some of these are able to bind HIV-1 gp120, and here we test their ability to act as functional receptors. We find that the presence of human CD4 residues 33-62 is enough to confer efficient receptor function to rat CD4, and we conclude that it is unlikely that regions of CD4 outside this sequence are involved in specific interactions with HIV-1 during either infection or syncytium formation.


2008 ◽  
Vol 82 (11) ◽  
pp. 5584-5593 ◽  
Author(s):  
Wei Huang ◽  
Jonathan Toma ◽  
Signe Fransen ◽  
Eric Stawiski ◽  
Jacqueline D. Reeves ◽  
...  

ABSTRACT Many studies have demonstrated that the third variable region (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) is a major determinant of coreceptor tropism. Other regions in the surface gp120 subunit of Env can modulate coreceptor tropism in a manner that is not fully understood. In this study, we evaluated the effect of env determinants outside of V3 on coreceptor usage through the analysis of (i) patient-derived env clones that differ in coreceptor tropism, (ii) chimeric env sequences, and (iii) site-directed mutants. The introduction of distinct V3 sequences from CXCR4-using clones into an R5-tropic env backbone conferred the inefficient use of CXCR4 in some but not all cases. Conversely, in many cases, X4- and dual-tropic env backbones containing the V3 sequences of R5-tropic clones retained the ability to use CXCR4, suggesting that sequences outside of the V3 regions of these CXCR4-using clones were responsible for CXCR4 use. The determinants of CXCR4 use in a set of dual-tropic env sequences with V3 sequences identical to those of R5-tropic clones mapped to the gp41 transmembrane (TM) subunit. In one case, a single-amino-acid substitution in the fusion peptide of TM was able to confer CXCR4 use; however, TM substitutions associated with CXCR4 use varied among different env sequences. These results demonstrate that sequences in TM can modulate coreceptor specificity and that env sequences other than that of V3 may facilitate efficient CXCR4-mediated entry. We hypothesize that the latter plays an important role in the transition from CCR5 to CXCR4 coreceptor use.


2012 ◽  
Vol 56 (5) ◽  
pp. 2581-2589 ◽  
Author(s):  
Paula Ordonez ◽  
Takayuki Hamasaki ◽  
Yohei Isono ◽  
Norikazu Sakakibara ◽  
Masahiro Ikejiri ◽  
...  

ABSTRACTNonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are important components of current combination therapies for human immunodeficiency virus type 1 (HIV-1) infection. In screening of chemical libraries, we found 6-azido-1-benzyl-3-(3,5-dimethylbenzyl)uracil (AzBBU) and 6-amino-1-benzyl-3-(3,5-dimethylbenzyl)uracil (AmBBU) to be highly active and selective inhibitors of HIV-1 replicationin vitro. To determine the resistance profiles of these compounds, we conducted a long-term culture of HIV-1-infected MT-4 cells with escalating concentrations of each compound. After serial passages of the infected cells, escape viruses were obtained, and they were more than 500-fold resistant to the uracil derivatives compared to the wild type. Sequence analysis was conducted for RT of the escape viruses at passages 12 and 24. The amino acid mutation Y181C in the polymerase domain of RT was detected for all escape viruses. Docking studies using the crystal structure of RT showed that AmBBU requires the amino acid residues Leu100, Val106, Tyr181, and Trp229 for exerting its inhibitory effect on HIV-1. Four additional amino acid changes (K451R, R461K, T468P, and D471N) were identified in the RNase H domain of RT; however, their precise role in the acquisition of resistance is still unclear. In conclusion, the initial mutation Y181C seems sufficient for the acquisition of resistance to the uracil derivatives AzBBU and AmBBU. Further studies are required to determine the precise role of each mutation in the acquisition of HIV-1 resistance.


2006 ◽  
Vol 80 (22) ◽  
pp. 10957-10971 ◽  
Author(s):  
Catherine S. Adamson ◽  
Sherimay D. Ablan ◽  
Ioana Boeras ◽  
Ritu Goila-Gaur ◽  
Ferri Soheilian ◽  
...  

ABSTRACT 3-O-(3′,3′-dimethylsuccinyl)betulinic acid (PA-457 or bevirimat) potently inhibits human immunodeficiency virus type 1 (HIV-1) maturation by blocking a late step in the Gag processing pathway, specifically the cleavage of SP1 from the C terminus of capsid (CA). To gain insights into the mechanism(s) by which HIV-1 could evolve resistance to PA-457 and to evaluate the likelihood of such resistance arising in PA-457-treated patients, we sought to identify and characterize a broad spectrum of HIV-1 variants capable of conferring resistance to this compound. Numerous independent rounds of selection repeatedly identified six single-amino-acid substitutions that independently confer PA-457 resistance: three at or near the C terminus of CA (CA-H226Y, -L231F, and -L231M) and three at the first and third residues of SP1 (SP1-A1V, -A3T, and -A3V). We determined that mutations CA-H226Y, CA-L231F, CA-L231M, and SP1-A1V do not impose a significant replication defect on HIV-1 in culture. In contrast, mutations SP1-A3V and -A3T severely impaired virus replication and inhibited virion core condensation. The replication defect imposed by SP1-A3V was reversed by a second-site compensatory mutation in CA (CA-G225S). Intriguingly, high concentrations of PA-457 enhanced the maturation of SP1 residue 3 mutants. The different phenotypes associated with mutations that confer PA-457 resistance suggest the existence of multiple mechanisms by which HIV-1 can evolve resistance to this maturation inhibitor. These findings have implications for the ongoing development of PA-457 to treat HIV-1 infection in vivo.


Sign in / Sign up

Export Citation Format

Share Document