scholarly journals Sequences Adjacent to oriP Improve the Persistence of Epstein-Barr Virus-Based Episomes in B Cells

2001 ◽  
Vol 75 (22) ◽  
pp. 11249-11252 ◽  
Author(s):  
Robert E. White ◽  
Richard Wade-Martins ◽  
Michael R. James

ABSTRACT Epstein-Barr virus (EBV) oriP and the EBV nuclear antigen 1 (EBNA-1) protein allow persistence of EBV-based episomes. A nuclear matrix attachment region (MAR) spansoriP and the adjacent region of the EBV genome containing the EBV-expressed RNAs. Here, we show that episomes with the MAR are retained significantly more efficiently in EBV-positive B cells than episomes containing oriPalone.

2001 ◽  
Vol 75 (13) ◽  
pp. 6235-6241 ◽  
Author(s):  
Barbara Wensing ◽  
Albert Stühler ◽  
Peter Jenkins ◽  
Martine Hollyoake ◽  
Claudio Elgueta Karstegl ◽  
...  

ABSTRACT Most of the Epstein-Barr virus genome in latently infected cells is in a standard nucleosomal structure, but the region encompassingoriP and the Epstein-Barr virus-encoded small RNA (EBER) genes shows a distinctive pattern when digested with micrococcal nuclease. This pattern corresponds to a previously mapped nuclear matrix attachment region. Although the EBER genes are adjacent to oriP, there is only a two- to fourfold effect oforiP on EBER expression. However, sequences containing a consensus ATF site upstream of EBER1 are important for EBER1 expression.


1992 ◽  
Vol 66 (12) ◽  
pp. 7461-7468 ◽  
Author(s):  
A L Lear ◽  
M Rowe ◽  
M G Kurilla ◽  
S Lee ◽  
S Henderson ◽  
...  

2002 ◽  
Vol 76 (3) ◽  
pp. 1025-1032 ◽  
Author(s):  
Michiko Tanaka ◽  
Akihiko Yokoyama ◽  
Mie Igarashi ◽  
Go Matsuda ◽  
Kentaro Kato ◽  
...  

ABSTRACT Self-association of viral proteins is important for many of their functions, including enzymatic, transcriptional, and transformational activities. Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) contains various numbers of W1W2 repeats and a unique carboxyl-terminal Y1Y2 domain. It was reported that EBNA-LP associates with a variety of cellular proteins and plays a critical role in EBV-induced transformation. We report here that EBNA-LP self-associates in vivo and the domain responsible for the homotypic association is a multifunctional domain mediating nuclear localization, nuclear matrix association, and EBNA-2-dependent coactivator function of the protein. Our conclusions are based on the following observations. (i) EBNA-LP interacts with itself or its derivatives in the yeast two-hybrid system. (ii) A purified chimeric protein consisting of glutathione S-transferase fused to EBNA-LP specifically formed complexes with EBNA-LP transiently expressed in COS-7 cells. (iii) When Flag epitope-tagged EBNA-LP with either one or two W1W2 repeats and EBNA-LP containing four W1W2 repeats were coexpressed in COS-7 cells, the latter was specifically coimmunoprecipitated with the former. (iv) Mutational analyses of EBNA-LP with deletion mutants revealed that the region between codons 19 and 39 (relative to the first amino acid residue of the W2 domain) is essential for self-association of the protein. The mapped region almost completely overlaps with CR2 and CR3, regions conserved among a subset of primate γ-herpesviruses and critical for EBNA-2-dependent coactivator function. Amino acid substitutions in CR2 alone abolished the ability of the protein to self-interact. This laboratory previously reported that CR2 is also responsible for nuclear localization and nuclear matrix association (A. Yokoyama, Y. Kawaguchi, I. Kitabayashi, M. Ohki, and K. Hirai, Virology 279:401–413, 2001). (v) Sucrose gradient sedimentation showed that amino acid substitutions in CR2 reduced the ability of the protein to form protein complexes in B cells. These results suggest that self-association of EBNA-LP may be important for its various functions and interactions of the protein with multiple cellular proteins.


2018 ◽  
Vol 92 (9) ◽  
Author(s):  
Chong Wang ◽  
Hufeng Zhou ◽  
Yong Xue ◽  
Jun Liang ◽  
Yohei Narita ◽  
...  

ABSTRACTEpstein-Barr virus nuclear antigen (EBNA) leader protein (EBNALP) is one of the first viral genes expressed upon B-cell infection. EBNALP is essential for EBV-mediated B-cell immortalization. EBNALP is thought to function primarily by coactivating EBNA2-mediated transcription. Chromatin immune precipitation followed by deep sequencing (ChIP-seq) studies highlight that EBNALP frequently cooccupies DNA sites with host cell transcription factors (TFs), in particular, EP300, implicating a broader role in transcription regulation. In this study, we investigated the mechanisms of EBNALP transcription coactivation through EP300. EBNALP greatly enhanced EP300 transcription activation when EP300 was tethered to a promoter. EBNALP coimmunoprecipitated endogenous EP300 from lymphoblastoid cell lines (LCLs). EBNALP W repeat serine residues 34, 36, and 63 were required for EP300 association and coactivation. Deletion of the EP300 histone acetyltransferase (HAT) domain greatly reduced EBNALP coactivation and abolished the EBNALP association. An EP300 bromodomain inhibitor also abolished EBNALP coactivation and blocked the EP300 association with EBNALP. EBNALP sites cooccupied by EP300 had significantly higher ChIP-seq signals for sequence-specific TFs, including SPI1, RelA, EBF1, IRF4, BATF, and PAX5. EBNALP- and EP300-cooccurring sites also had much higher H3K4me1 and H3K27ac signals, indicative of activated enhancers. EBNALP-only sites had much higher signals for DNA looping factors, including CTCF and RAD21. EBNALP coactivated reporters under the control of NF-κB or SPI1. EP300 inhibition abolished EBNALP coactivation of these reporters. Clustered regularly interspaced short palindromic repeat interference targeting of EBNALP enhancer sites significantly reduced target gene expression, including that of EP300 itself. These data suggest a previously unrecognized mechanism by which EBNALP coactivates transcription through subverting of EP300 and thus affects the expression of LCL genes regulated by a broad range of host TFs.IMPORTANCEEpstein-Barr virus was the first human DNA tumor virus discovered over 50 years ago. EBV is causally linked to ∼200,000 human malignancies annually. These cancers include endemic Burkitt lymphoma, Hodgkin lymphoma, lymphoma/lymphoproliferative disease in transplant recipients or HIV-infected people, nasopharyngeal carcinoma, and ∼10% of gastric carcinoma cases. EBV-immortalized human B cells faithfully model key aspects of EBV lymphoproliferative diseases and are useful models of EBV oncogenesis. EBNALP is essential for EBV to transform B cells and transcriptionally coactivates EBNA2 by removing repressors from EBNA2-bound DNA sites. Here, we found that EBNALP can also modulate the activity of the key transcription activator EP300, an acetyltransferase that activates a broad range of transcription factors. Our data suggest that EBNALP regulates a much broader range of host genes than was previously appreciated. A small-molecule inhibitor of EP300 abolished EBNALP coactivation of multiple target genes. These findings suggest novel therapeutic approaches to control EBV-associated lymphoproliferative diseases.


2004 ◽  
Vol 199 (10) ◽  
pp. 1421-1431 ◽  
Author(s):  
Judy Tellam ◽  
Geoff Connolly ◽  
Katherine J. Green ◽  
John J. Miles ◽  
Denis J. Moss ◽  
...  

Epstein-Barr virus (EBV)–encoded nuclear antigen (EBNA)1 is thought to escape cytotoxic T lymphocyte (CTL) recognition through either self-inhibition of synthesis or by blockade of proteasomal degradation by the glycine-alanine repeat (GAr) domain. Here we show that EBNA1 has a remarkably varied cell type–dependent stability. However, these different degradation rates do not correspond to the level of major histocompatibility complex class I–restricted presentation of EBNA1 epitopes. In spite of the highly stable expression of EBNA1 in B cells, CTL epitopes derived from this protein are efficiently processed and presented to CD8+ T cells. Furthermore, we show that EBV-infected B cells can readily activate EBNA1-specific memory T cell responses from healthy virus carriers. Functional assays revealed that processing of these EBNA1 epitopes is proteasome and transporter associated with antigen processing dependent. We also show that the endogenous presentation of these epitopes is dependent on the newly synthesized protein rather than the long-lived stable EBNA1. Based on these observations, we propose that defective ribosomal products, not the full-length antigen, are the primary source of endogenously processed CD8+ T cell epitopes from EBNA1.


1985 ◽  
Vol 162 (1) ◽  
pp. 45-59 ◽  
Author(s):  
D A Thorley-Lawson ◽  
K P Mann

We have used Epstein-Barr virus (EBV) infection in vitro to delineate two distinct stages in B cell activation. Previous studies have shown that the BLAST-2 (EBVCS) (EBV cell surface) activation antigen is expressed on a small fraction of B cells within 24 h of stimulation with a variety of agents, including mitogens and EBV. In this study, we have been able to isolate the BLAST-2 (EBVCS)+ cells early after activation/infection with EBV. These cells are small B cells that are actively synthesizing RNA but not DNA, and are, therefore, clearly distinct from large proliferating lymphoblasts. In addition, they contain multiple copies of the EBV genome, express the viral nuclear antigen (EBNA) and, most importantly, proceed to undergo transformation when placed back in culture. By comparison, the BLAST-2 (EBVCS)- population does not undergo transformation, even though a fraction of these cells are activated for RNA synthesis and express EBNA. Thus, using the EBV system, we have been able to show directly that an activated B cell first expresses the BLAST-2 (EBVCS) antigen concomitant with an increase in RNA synthesis, and then subsequently proceeds to differentiate into a proliferating lymphoblast.


2006 ◽  
Vol 87 (11) ◽  
pp. 3169-3176 ◽  
Author(s):  
Kristina Grabusic ◽  
Sabine Maier ◽  
Andrea Hartmann ◽  
Anja Mantik ◽  
Wolfgang Hammerschmidt ◽  
...  

The Epstein–Barr virus (EBV) nuclear antigen 2 (EBNA2) gene product is the key regulator of the latent genes of EBV and essential for EBV-mediated transformation of human primary B cells. Viral mutants were constructed carrying a deletion of the EBNA2 conserved region 4 (CR4). Primary resting B cells infected with the ΔCR4-EBNA2 mutant virus were dramatically impaired for B cell transformation. Lymphoblastoid cell lines (LCLs) established with this mutant EBV revealed a prolonged population doubling time when cells were cultivated at low cell densities, which are not critical for wild-type-infected cells. Low-level spontaneous cell death occurred when the cells were cultivated at suboptimal cell densities. The phenotype of B cells and LCLs infected with the ΔCR4-EBNA2 mutant virus indicated that the CR4 region of EBNA2 specifically contributes to the viability of the cells rather than affecting cell division rates.


2004 ◽  
Vol 78 (8) ◽  
pp. 3984-3993 ◽  
Author(s):  
Mikiko Kanamori ◽  
Shinya Watanabe ◽  
Reiko Honma ◽  
Masayuki Kuroda ◽  
Shosuke Imai ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) plays a critical role in transformation of primary B lymphocytes to continuously proliferating lymphoblastoid cell lines (LCLs). To identify cellular genes in B cells whose expression is regulated by EBNA-LP, we performed microarray expression profiling on an EBV-negative human B-cell line, BJAB cells, that were transduced by a retroviral vector expressing the EBV EBNA-LP (BJAB-LP cells) and on BJAB cells that were transduced with a control vector (BJAB-vec cells). Microarray analysis led to the identification of a cellular gene encoding the CC chemokine TARC as a novel target gene that was induced by EBNA-LP. The levels of TARC mRNA expression and TARC secretion were significantly up-regulated in BJAB-LP compared with BJAB-vec cells. Induction of TARC was also observed when a subline of BJAB cells was converted by a recombinant EBV. Among the EBV-infected B-cell lines with the latency III phenotype that were tested, the LCLs especially secreted significantly high levels of TARC. The level of TARC secretion appeared to correlate with the level of full-length EBNA-LP expression. These results indicate that EBV infection induces TARC expression in B cells and that EBNA-LP is one of the viral gene products responsible for the induction.


Sign in / Sign up

Export Citation Format

Share Document