scholarly journals p59fyn tyrosine kinase associates with multiple T-cell receptor subunits through its unique amino-terminal domain.

1992 ◽  
Vol 12 (12) ◽  
pp. 5438-5446 ◽  
Author(s):  
L K Timson Gauen ◽  
A N Kong ◽  
L E Samelson ◽  
A S Shaw

Several lines of evidence link the protein tyrosine kinase p59fyn to the T-cell receptor. The molecular basis of this interaction has not been established. Here we show that the tyrosine kinase p59fyn can associate with chimeric proteins that contain the cytoplasmic domains of CD3 epsilon, gamma, zeta (zeta), and eta. Mutational analysis of the zeta cytoplasmic domain demonstrated that the membrane-proximal 41 residues of zeta are sufficient for p59fyn binding and that at least two p59fyn binding domains are present. The association of p59fyn with the zeta chain was specific, as two closely related Src family protein tyrosine kinases, p60src and p56lck, did not associate with a chimeric protein that contained the cytoplasmic domain of zeta. Mutational analysis of p59fyn revealed that a 10-amino-acid sequence in the unique amino-terminal domain of p59fyn was responsible for the association with zeta. These findings support evidence that p59fyn is functionally and structurally linked to the T-cell receptor. More importantly, these studies support a critical role for the unique amino-terminal domains of Src family kinases in the coupling of tyrosine kinases to the signalling pathways of cell surface receptors.

1992 ◽  
Vol 12 (12) ◽  
pp. 5438-5446
Author(s):  
L K Timson Gauen ◽  
A N Kong ◽  
L E Samelson ◽  
A S Shaw

Several lines of evidence link the protein tyrosine kinase p59fyn to the T-cell receptor. The molecular basis of this interaction has not been established. Here we show that the tyrosine kinase p59fyn can associate with chimeric proteins that contain the cytoplasmic domains of CD3 epsilon, gamma, zeta (zeta), and eta. Mutational analysis of the zeta cytoplasmic domain demonstrated that the membrane-proximal 41 residues of zeta are sufficient for p59fyn binding and that at least two p59fyn binding domains are present. The association of p59fyn with the zeta chain was specific, as two closely related Src family protein tyrosine kinases, p60src and p56lck, did not associate with a chimeric protein that contained the cytoplasmic domain of zeta. Mutational analysis of p59fyn revealed that a 10-amino-acid sequence in the unique amino-terminal domain of p59fyn was responsible for the association with zeta. These findings support evidence that p59fyn is functionally and structurally linked to the T-cell receptor. More importantly, these studies support a critical role for the unique amino-terminal domains of Src family kinases in the coupling of tyrosine kinases to the signalling pathways of cell surface receptors.


Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1561-1572 ◽  
Author(s):  
S Gibson ◽  
B Leung ◽  
JA Squire ◽  
M Hill ◽  
N Arima ◽  
...  

Signal transduction through the T-cell receptor and cytokine receptors on the surface of T lymphocytes occurs largely via tyrosine phosphorylation of intracellular substrates. Because neither the T-cell receptor nor cytokine receptors contain intrinsic kinase domains, signal transduction is thought to occur via association of these receptors with intracellular protein tyrosine kinases. Although several members of the SRC and SYK families of tyrosine kinases have been implicated in signal transduction in lymphocytes, it seems likely that additional tyrosine kinases involved in signal transduction remain to be identified. To identify unique T-cell tyrosine kinases, we used polymerase chain reaction-based cloning with degenerate oligonucleotides directed at highly conserved motifs of tyrosine kinase domains. We have cloned the complete cDNA for a unique human tyrosine kinase that is expressed mainly in T lymphocytes (EMT) and natural killer (NK) cells. The cDNA of EMT predicts an open reading frame of 1866 bp encoding a protein with a predicted size of 72 Kd, which is in keeping with its size on Western blotting. A single 6.2-kb EMT mRNA and 72-Kd protein were detected in T lymphocytes and NK-like cell lines, but were not detected in other cell lineages. EMT contains both SH2 and SH3 domains, as do many other intracellular kinases. EMT does not contain the N-terminal myristylation site or the negative regulatory tyrosine phosphorylation site in its carboxyterminus that are found in the SRC family of tyrosine kinases. EMT is related to the B-cell progenitor kinase (BPK), which has recently been implicated in X-linked hypogammaglobulinemia, to the TECI mammalian kinase, which has been implicated in liver neoplasia, to the more widely expressed TECII mammalian kinase, and to the Drosophila melanogaster Dsrc28 kinase. Sequence comparison suggests that EMT is likely the human homologue of a recently identified murine interleukin-2 (IL-2)-inducible T cell kinase (ITK). However, unlike ITK, EMT message and protein levels do not vary markedly on stimulation of human IL-2-responsive T cells with IL-2. Taken together, it seems that EMT is a member of a new family of intracellular kinases that includes BPK, TECI, and TECII. EMT was localized to chromosome 5q31–32, a region that contains the genes for several growth factors and receptors as well as early activation genes, particularly those involved in the hematopoietic system. Furthermore, the 5q31–32 region is implicated in the genesis of the 5q- syndrome associated with myelodysplasia and development of leukemia.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 184 (2) ◽  
pp. 365-376 ◽  
Author(s):  
V A Boussiotis ◽  
D L Barber ◽  
B J Lee ◽  
J G Gribben ◽  
G J Freeman ◽  
...  

When stimulated through their antigen receptor, without costimulation, T cells enter a state of antigen-specific unresponsiveness, termed anergy. B7-mediated costimulation, signaling via CD28, is sufficient to prevent the induction of anergy. Here we show that ligation of T cell receptor (TCR) by alloantigen alone, which results in anergy, activates tyrosine phosphorylation of TCR zeta and its association with fyn. In contrast, TCR ligation in the presence of B7 costimulation, which results in productive immunity, activates tyrosine phosphorylation of TCR zeta and CD3 chains, which associate with activated lck and zeta-associated protein (ZAP) 70. Under these conditions, CD28 associates with activated lck and TCR zeta. These data suggest that the induction of anergy is an active signaling process characterized by the association of TCR zeta and fyn. In addition, CD28-mediated costimulation may prevent the induction of anergy by facilitating the effective association of TCR zeta and CD3 epsilon with the critical protein tyrosine kinase lck, and the subsequent recruitment of ZAP-70. Strategies to inhibit or activate TCR-associated, specific protein tyrosine kinase-mediated pathways may provide a basis for drug development with potential applications in the fields of transplantation, autoimmunity, and tumor immunity.


Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1561-1572 ◽  
Author(s):  
S Gibson ◽  
B Leung ◽  
JA Squire ◽  
M Hill ◽  
N Arima ◽  
...  

Abstract Signal transduction through the T-cell receptor and cytokine receptors on the surface of T lymphocytes occurs largely via tyrosine phosphorylation of intracellular substrates. Because neither the T-cell receptor nor cytokine receptors contain intrinsic kinase domains, signal transduction is thought to occur via association of these receptors with intracellular protein tyrosine kinases. Although several members of the SRC and SYK families of tyrosine kinases have been implicated in signal transduction in lymphocytes, it seems likely that additional tyrosine kinases involved in signal transduction remain to be identified. To identify unique T-cell tyrosine kinases, we used polymerase chain reaction-based cloning with degenerate oligonucleotides directed at highly conserved motifs of tyrosine kinase domains. We have cloned the complete cDNA for a unique human tyrosine kinase that is expressed mainly in T lymphocytes (EMT) and natural killer (NK) cells. The cDNA of EMT predicts an open reading frame of 1866 bp encoding a protein with a predicted size of 72 Kd, which is in keeping with its size on Western blotting. A single 6.2-kb EMT mRNA and 72-Kd protein were detected in T lymphocytes and NK-like cell lines, but were not detected in other cell lineages. EMT contains both SH2 and SH3 domains, as do many other intracellular kinases. EMT does not contain the N-terminal myristylation site or the negative regulatory tyrosine phosphorylation site in its carboxyterminus that are found in the SRC family of tyrosine kinases. EMT is related to the B-cell progenitor kinase (BPK), which has recently been implicated in X-linked hypogammaglobulinemia, to the TECI mammalian kinase, which has been implicated in liver neoplasia, to the more widely expressed TECII mammalian kinase, and to the Drosophila melanogaster Dsrc28 kinase. Sequence comparison suggests that EMT is likely the human homologue of a recently identified murine interleukin-2 (IL-2)-inducible T cell kinase (ITK). However, unlike ITK, EMT message and protein levels do not vary markedly on stimulation of human IL-2-responsive T cells with IL-2. Taken together, it seems that EMT is a member of a new family of intracellular kinases that includes BPK, TECI, and TECII. EMT was localized to chromosome 5q31–32, a region that contains the genes for several growth factors and receptors as well as early activation genes, particularly those involved in the hematopoietic system. Furthermore, the 5q31–32 region is implicated in the genesis of the 5q- syndrome associated with myelodysplasia and development of leukemia.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 183 (2) ◽  
pp. 669-674 ◽  
Author(s):  
S Y Lee ◽  
C G Park ◽  
Y Choi

CD30 is a member of the tumor necrosis factor superfamily and a surface marker for Hodgkin's disease. Normal activated T cells and several virally transformed T or B cell lines also show CD30 expression. The interaction of CD30 with its ligand induces cell death or proliferation, depending on the cell type. In this report we characterize the signals mediated by the intracellular domain of CD30 and show that, in combination with signal(s) transduced by the T cell receptor, the multimerization of CD30 cytoplasmic domain induces Fas(CD95)-independent cell death in T cell hybridomas. Deletion analysis shows that the COOH-terminal 66 amino acids of CD30 are required to induce cell death. Using the yeast two-hybrid system, we have identified that the same region of CD30 interacts with tumor necrosis factor receptor-associated factor (TRAF)1 and TRAF2. These results indicate that TRAF1 and/or TRAF2 play an important role in cell death in addition to their previously identified roles in cell proliferation.


2020 ◽  
Vol 295 (8) ◽  
pp. 2239-2247 ◽  
Author(s):  
Jeoung-Eun Park ◽  
David D. Brand ◽  
Edward F. Rosloniec ◽  
Ae-Kyung Yi ◽  
John M. Stuart ◽  
...  

Multiple observations implicate T-cell dysregulation as a central event in the pathogenesis of rheumatoid arthritis. Here, we investigated mechanisms for suppressing T-cell activation via the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1). To determine how LAIR-1 affects T-cell receptor (TCR) signaling, we compared 1) T cells from LAIR-1–sufficient and –deficient mice, 2) Jurkat cells expressing either LAIR-1 mutants or C-terminal Src kinase (CSK) mutants, and 3) T cells from mice that contain a CSK transgene susceptible to chemical inhibition. Our results indicated that LAIR-1 engagement by collagen or by complement C1q (C1Q, which contains a collagen-like domain) inhibits TCR signaling by decreasing the phosphorylation of key components in the canonical T-cell signaling pathway, including LCK proto-oncogene SRC family tyrosine kinase (LCK), LYN proto-oncogene SRC family tyrosine kinase (LYN), ζ chain of T-cell receptor–associated protein kinase 70 (ZAP-70), and three mitogen-activated protein kinases (extracellular signal–regulated kinase, c-Jun N-terminal kinase 1/2, and p38). The intracellular region of LAIR-1 contains two immunoreceptor tyrosine-based inhibition motifs that are both phosphorylated by LAIR-1 activation, and immunoprecipitation experiments revealed that Tyr-251 in LAIR-1 binds CSK. Using CRISPR/Cas9-mediated genome editing, we demonstrate that CSK is essential for the LAIR-1–induced inhibition of the human TCR signal transduction. T cells from mice that expressed a PP1 analog–sensitive form of CSK (CskAS) corroborated these findings, and we also found that Tyr-251 is critical for LAIR-1's inhibitory function. We propose that LAIR-1 activation may be a strategy for controlling inflammation and may offer a potential therapeutic approach for managing autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document