scholarly journals Pie1, a Protein Interacting with Mec1, Controls Cell Growth and Checkpoint Responses in Saccharomyces cerevisiae

2001 ◽  
Vol 21 (3) ◽  
pp. 755-764 ◽  
Author(s):  
Tatsushi Wakayama ◽  
Tae Kondo ◽  
Seiko Ando ◽  
Kunihiro Matsumoto ◽  
Katsunori Sugimoto

ABSTRACT In eukaryotes, the ATM and ATR family proteins play a critical role in the DNA damage and replication checkpoint controls. These proteins are characterized by a kinase domain related to the phosphatidylinositol 3-kinase, but they have the ability to phosphorylate proteins. In budding yeast, the ATR family protein Mec1/Esr1 is essential for checkpoint responses and cell growth. We have isolated the PIE1 gene in a two-hybrid screen for proteins that interact with Mec1, and we show that Pie1 interacts physically with Mec1 in vivo. Like MEC1, PIE1is essential for cell growth, and deletion of the PIE1 gene causes defects in the DNA damage and replication block checkpoints similar to those observed in mec1Δ mutants. Rad53 hyperphosphorylation following DNA damage and replication block is also decreased in pie1Δ cells, as in mec1Δcells. Pie1 has a limited homology to fission yeast Rad26, which forms a complex with the ATR family protein Rad3. Mutation of the region in Pie1 homologous to Rad26 results in a phenotype similar to that of thepie1Δ mutation. Mec1 protein kinase activity appears to be essential for checkpoint responses and cell growth. However, Mec1 kinase activity is unaffected by the pie1Δ mutation, suggesting that Pie1 regulates some essential function other than Mec1 kinase activity. Thus, Pie1 is structurally and functionally related to Rad26 and interacts with Mec1 to control checkpoints and cell proliferation.

2004 ◽  
Vol 382 (2) ◽  
pp. 425-431 ◽  
Author(s):  
Ulrik DOEHN ◽  
Steen GAMMELTOFT ◽  
Shi-Hsiang SHEN ◽  
Claus J. JENSEN

RSK2 (p90 ribosomal S6 kinase 2) is activated via the ERK (extracellular-signal-regulated kinase) pathway by phosphorylation on four sites: Ser227 in the activation loop of the N-terminal kinase domain, Ser369 in the linker, Ser386 in the hydrophobic motif and Thr577 in the C-terminal kinase domain of RSK2. In the present study, we demonstrate that RSK2 is associated in vivo with PP2Cδ (protein phosphatase 2Cδ). In epidermal growth factorstimulated cells, RSK2 is partially dephosphorylated on all four sites in an Mn2+-dependent manner, leading to reduced protein kinase activity. Furthermore, PP2Cδ is phosphorylated by ERK on Thr315 and Thr333 in the catalytic domain. Mutation of Thr315 and Thr333 to alanine in a catalytically inactive mutant PP2Cδ(H154D) (His154→Asp) increases the association with RSK2 significantly, whereas mutation to glutamate, mimicking phosphorylation, reduces the binding of RSK2. The domains of interaction are mapped to the N-terminal extension comprising residues 1–71 of PP2Cδ and the N-terminal kinase domain of RSK2. The interaction is specific, since PP2Cδ associates with RSK1–RSK4, MSK1 (mitogen- and stress-activated kinase 1) and MSK2, but not with p70 S6 kinase or phosphoinositide-dependent kinase 1. We conclude that RSK2 is associated with PP2Cδ in vivo and is partially dephosphorylated by it, leading to reduced kinase activity.


2007 ◽  
Vol 27 (24) ◽  
pp. 8502-8509 ◽  
Author(s):  
Yingli Sun ◽  
Ye Xu ◽  
Kanaklata Roy ◽  
Brendan D. Price

ABSTRACT The ATM protein kinase is essential for cells to repair and survive genotoxic events. The activation of ATM's kinase activity involves acetylation of ATM by the Tip60 histone acetyltransferase. In this study, systematic mutagenesis of lysine residues was used to identify regulatory ATM acetylation sites. The results identify a single acetylation site at lysine 3016, which is located in the highly conserved C-terminal FATC domain adjacent to the kinase domain. Antibodies specific for acetyl-lysine 3016 demonstrate rapid (within 5 min) in vivo acetylation of ATM following exposure to bleomycin. Furthermore, lysine 3016 of ATM is a substrate in vitro for the Tip60 histone acetyltransferase. Mutation of lysine 3016 does not affect unstimulated ATM kinase activity but does abolish upregulation of ATM's kinase activity by DNA damage, inhibits the conversion of inactive ATM dimers to active ATM monomers, and prevents the ATM-dependent phosphorylation of the p53 and chk2 proteins. These results are consistent with a model in which acetylation of lysine 3016 in the FATC domain of ATM activates the kinase activity of ATM. The acetylation of ATM on lysine 3016 by Tip60 is therefore a key step linking the detection of DNA damage and the activation of ATM kinase activity.


Author(s):  
Hongtao Li ◽  
Peng Chen ◽  
Lei Chen ◽  
Xinning Wang

Background: Nuclear factor kappa B (NF-κB) is usually activated in Wilms tumor (WT) cells and plays a critical role in WT development. Objective: The study purpose was to screen a NF-κB inhibitor from natural product library and explore its effects on WT development. Methods: Luciferase assay was employed to assess the effects of natural chemical son NF-κB activity. CCK-8 assay was conducted to assess cell growth in response to naringenin. WT xenograft model was established to analyze the effect of naringenin in vivo. Quantitative real-time PCR and Western blot were performed to examine the mRNA and protein levels of relative genes, respectively. Results: Naringenin displayed significant inhibitory effect on NF-κB activation in SK-NEP-1 cells. In SK-NEP-1 and G-401 cells, naringenin inhibited p65 phosphorylation. Moreover, naringenin suppressed TNF-α-induced p65 phosphorylation in WT cells. Naringenin inhibited TLR4 expression at both mRNA and protein levels in WT cells. CCK-8 staining showed that naringenin inhibited cell growth of the two above WT cells in dose-and time-dependent manner, whereas Toll-like receptor 4 (TLR4) over expression partially reversed the above phenomena. Besides, naringenin suppressed WT tumor growth in dose-and time-dependent manner in vivo. Western blot found that naringenin inhibited TLR4 expression and p65 phosphorylation in WT xenograft tumors. Conclusion: Naringenin inhibits WT development viasuppressing TLR4/NF-κB signaling


1999 ◽  
Vol 189 (8) ◽  
pp. 1285-1294 ◽  
Author(s):  
Laurie L. Hill ◽  
Vijay K. Shreedhar ◽  
Margaret L. Kripke ◽  
Laurie B. Owen-Schaub

Induction of antigen-specific suppression elicited by environmental insults, such as ultraviolet (UV)-B radiation in sunlight, can inhibit an effective immune response in vivo and may contribute to the outgrowth of UV-induced skin cancer. Although UV-induced DNA damage is known to be an initiating event in the immune suppression of most antigen responses, the underlying mechanism(s) of such suppression remain undefined. In this report, we document that Fas ligand (FasL) is critical for UV-induced systemic immune suppression. Normal mice acutely exposed to UV exhibit a profound suppression of both contact hypersensitivity and delayed type hypersensitivity (DTH) reactions and the development of transferable antigen-specific suppressor cells. FasL-deficient mice exposed to UV lack both transferable suppressor cell activity and primary suppression to all antigens tested, with the exception of the DTH response to allogeneic spleen cells. Interestingly, suppression of this response is also known to occur independently of UV-induced DNA damage. Delivery of alloantigen as protein, rather than intact cells, restored the requirement for FasL in UV-induced immune suppression of this response. These results substantiate that FasL/Fas interactions are essential for systemic UV-induced suppression of immune responses that involve host antigen presentation and suggest an interrelationship between UV-induced DNA damage and FasL in this phenomenon. Collectively, our results suggest a model whereby UV-induced DNA damage disarms the immune system in a manner similar to that observed in immunologically privileged sites.


1999 ◽  
Vol 19 (9) ◽  
pp. 6076-6084 ◽  
Author(s):  
Graeme C. M. Smith ◽  
Fabrizio d’adda di Fagagna ◽  
Nicholas D. Lakin ◽  
Stephen P. Jackson

ABSTRACT The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance—the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.


2019 ◽  
Vol 201 (23) ◽  
Author(s):  
Germán E. Piñas ◽  
John S. Parkinson

ABSTRACT Escherichia coli chemotaxis relies on control of the autophosphorylation activity of the histidine kinase CheA by transmembrane chemoreceptors. Core signaling units contain two receptor trimers of dimers, one CheA homodimer, and two monomeric CheW proteins that couple CheA activity to receptor control. Core signaling units appear to operate as two-state devices, with distinct kinase-on and kinase-off CheA output states whose structural nature is poorly understood. A recent all-atom molecular dynamic simulation of a receptor core unit revealed two alternative conformations, “dipped” and “undipped,” for the ATP-binding CheA.P4 domain that could be related to kinase activity states. To explore possible signaling roles for the dipped CheA.P4 conformation, we created CheA mutants with amino acid replacements at residues (R265, E368, and D372) implicated in promoting the dipped conformation and examined their signaling consequences with in vivo Förster resonance energy transfer (FRET)-based kinase assays. We used cysteine-directed in vivo cross-linking reporters for the dipped and undipped conformations to assess mutant proteins for these distinct CheA.P4 domain configurations. Phenotypic suppression analyses revealed functional interactions among the conformation-controlling residues. We found that structural interactions between R265, located at the N terminus of the CheA.P3 dimerization domain, and E368/D372 in the CheA.P4 domain played a critical role in stabilizing the dipped conformation and in producing kinase-on output. Charge reversal replacements at any of these residues abrogated the dipped cross-linking signal, CheA kinase activity, and chemotactic ability. We conclude that the dipped conformation of the CheA.P4 domain is critical to the kinase-active state in core signaling units. IMPORTANCE Regulation of CheA kinase in chemoreceptor arrays is critical for Escherichia coli chemotaxis. However, to date, little is known about the CheA conformations that lead to the kinase-on or kinase-off states. Here, we explore the signaling roles of a distinct conformation of the ATP-binding CheA.P4 domain identified by all-atom molecular dynamics simulation. Amino acid replacements at residues predicted to stabilize the so-called “dipped” CheA.P4 conformation abolished the kinase activity of CheA and its ability to support chemotaxis. Our findings indicate that the dipped conformation of the CheA.P4 domain is critical for reaching the kinase-active state in chemoreceptor signaling arrays.


2000 ◽  
Vol 350 (2) ◽  
pp. 353-359 ◽  
Author(s):  
Carolyn A. BEETON ◽  
Edwin M. CHANCE ◽  
Lazaros C. FOUKAS ◽  
Peter R. SHEPHERD

Growth factors regulate a wide range of cellular processes via activation of the class-Ia phosphoinositide 3-kinases (PI 3-kinases). We directly compared kinetic properties of lipid- and protein-kinase activities of the widely expressed p110α and p110β isoforms. The lipid-kinase activity did not display Michaelis–Menten kinetics but modelling the kinetic data demonstrated that p110α has a higher Vmax and a 25-fold higher Km for PtdIns than p110β. A similar situation occurs with PtdIns(4,5)P2, because at low concentration of PtdIns(4,5)P2 p110β is a better PtdIns(4,5)P2 kinase than p110α, although this is reversed at high concentrations. These differences suggest different functional roles and we hypothesize that p110β functions better in areas of membranes containing low levels of substrate whereas p110α would work best in areas of high substrate density such as membrane lipid rafts. We also compared protein-kinase activities. We found that p110β phosphorylated p85 to a lower degree than did p110α. We used a novel peptide-based assay to compare the kinetics of the protein-kinase activities of p110α and p110β. These studies revealed that, like the lipid-kinase activity, the protein-kinase activity of p110α has a higher Km (550µM) than p110β (Km 8µM). Similarly, the relative Vmax towards peptide substrate of p110α was three times higher than that of p110β. This implies differences in the rates of regulatory autophosphorylation in vivo, which are likely to mean differential regulation of the lipid-kinase activities of p110α and p110β in vivo.


1998 ◽  
Vol 9 (9) ◽  
pp. 2361-2374 ◽  
Author(s):  
Dennis P. Gately ◽  
James C. Hittle ◽  
Gordon K. T. Chan ◽  
Tim J. Yen

Ataxia telangiectasia–mutated gene (ATM) is a 350-kDa protein whose function is defective in the autosomal recessive disorder ataxia telangiectasia (AT). Affinity-purified polyclonal antibodies were used to characterize ATM. Steady-state levels of ATM protein varied from undetectable in most AT cell lines to highly expressed in HeLa, U2OS, and normal human fibroblasts. Subcellular fractionation showed that ATM is predominantly a nuclear protein associated with the chromatin and nuclear matrix. ATM protein levels remained constant throughout the cell cycle and did not change in response to serum stimulation. Ionizing radiation had no significant effect on either the expression or distribution of ATM. ATM immunoprecipitates from HeLa cells and the human DNA-dependent protein kinase null cell line MO59J, but not from AT cells, phosphorylated the 34-kDa subunit of replication protein A (RPA) complex in a single-stranded and linear double-stranded DNA–dependent manner. Phosphorylation of p34 RPA occurred on threonine and serine residues. Phosphopeptide analysis demonstrates that the ATM-associated protein kinase phosphorylates p34 RPA on similar residues observed in vivo. The DNA-dependent protein kinase activity observed for ATM immunocomplexes, along with the association of ATM with chromatin, suggests that DNA damage can induce ATM or a stably associated protein kinase to phosphorylate proteins in the DNA damage response pathway.


2003 ◽  
Vol 23 (17) ◽  
pp. 6327-6337 ◽  
Author(s):  
Aparna Sreenivasan ◽  
Anthony C. Bishop ◽  
Kevan M. Shokat ◽  
Douglas R. Kellogg

ABSTRACT In budding yeast, the Elm1 kinase is required for coordination of cell growth and cell division at G2/M. Elm1 is also required for efficient cytokinesis and for regulation of Swe1, the budding yeast homolog of the Wee1 kinase. To further characterize Elm1 function, we engineered an ELM1 allele that can be rapidly and selectively inhibited in vivo. We found that inhibition of Elm1 kinase activity during G2 results in a phenotype similar to the phenotype caused by deletion of the ELM1 gene, as expected. However, inhibition of Elm1 kinase activity earlier in the cell cycle results in a prolonged G1 delay. The G1 requirement for Elm1 kinase activity occurs before bud emergence, polarization of the septins, and synthesis of G1 cyclins. Inhibition of Elm1 kinase activity during early G1 also causes defects in the organization of septins, and inhibition of Elm1 kinase activity in a strain lacking the redundant G1 cyclins CLN1 and CLN2 is lethal. These results demonstrate that the Elm1 kinase plays an important role in G1 events required for bud emergence and septin organization.


Sign in / Sign up

Export Citation Format

Share Document