family protein
Recently Published Documents


TOTAL DOCUMENTS

1162
(FIVE YEARS 294)

H-INDEX

84
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Lainey J Williamson ◽  
Marina Galchenkova ◽  
Hannah L Best ◽  
Richard J Bean ◽  
Anna Munke ◽  
...  

Tpp49Aa1 from Lysinibacillus sphaericus is a Toxin_10 family protein that must interact with Cry48Aa1, a 3-domain crystal protein, to produce potent mosquitocidal activity, specifically against Culex quinquefasciatus mosquitoes. We use Culex cell lines to demonstrate for the first time transient detrimental effects of individual toxin components and widen the known target range of the proteins. MHz serial femtosecond crystallography at a nano-focused X-ray free electron laser allowed rapid and high-quality data collection to determine the Tpp49Aa1 structure at 2.2 Å resolution from the merged X-ray diffraction data. The structure revealed the packing of Cry49Aa1 within the natural nanocrystals isolated from sporulated bacteria, as a homodimer with a large intermolecular interface. We then modelled the potential interaction between Tpp49Aa1 and Cry48Aa1. The structure sheds light on natural crystallisation and, along with cell-based assays broadens our understanding of this two-component system.


2022 ◽  
Vol 221 (3) ◽  
Author(s):  
Sophia M. Hirsch ◽  
Frances Edwards ◽  
Mimi Shirasu-Hiza ◽  
Julien Dumont ◽  
Julie C. Canman

Contractile ring constriction during cytokinesis is thought to compact central spindle microtubules to form the midbody, an antiparallel microtubule bundle at the intercellular bridge. In Caenorhabditis elegans, central spindle microtubule assembly requires targeting of the CLASP family protein CLS-2 to the kinetochores in metaphase and spindle midzone in anaphase. CLS-2 targeting is mediated by the CENP-F–like HCP-1/2, but their roles in cytokinesis and midbody assembly are not known. We found that although HCP-1 and HCP-2 mostly function cooperatively, HCP-1 plays a more primary role in promoting CLS-2–dependent central spindle microtubule assembly. HCP-1/2 codisrupted embryos did not form central spindles but completed cytokinesis and formed functional midbodies capable of supporting abscission. These central spindle–independent midbodies appeared to form via contractile ring constriction–driven bundling of astral microtubules at the furrow tip. This work suggests that, in the absence of a central spindle, astral microtubules can support midbody assembly and that midbody assembly is more predictive of successful cytokinesis than central spindle assembly.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Hiroyuki Shimada ◽  
Naohiko Ikegaki

Peripheral neuroblastic tumors (neuroblastoma, ganglioneuroblastoma and ganglioneuroma) are heterogeneous and their diverse and wide range of clinical behaviors (spontaneous regression, tumor maturation and aggressive progression) are closely associated with genetic/molecular properties of the individual tumors. The International Neuroblastoma Pathology Classification, a biologically relevant and prognostically significant morphology classification distinguishing the favorable histology (FH) and unfavorable histology (UH) groups in this disease, predicts survival probabilities of the patients with the highest hazard ratio. The recent advance of neuroblastoma research with precision medicine approaches demonstrates that tumors in the UH group are also heterogeneous and four distinct subgroups—MYC, TERT, ALT and null—are identified. Among them, the first three subgroups are collectively named extremely unfavorable histology (EUH) tumors because of their highly aggressive clinical behavior. As indicated by their names, these EUH tumors are individually defined by their potential targets detected molecularly and immunohistochemically, such as MYC-family protein overexpression, TERT overexpression and ATRX (or DAXX) loss. In the latter half on this paper, the current status of therapeutic targeting of these EUH tumors is discussed for the future development of effective treatments of the patients.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yelena Borovsky ◽  
Amit Raz ◽  
Adi Doron-Faigenboim ◽  
Hanita Zemach ◽  
Eldad Karavani ◽  
...  

Fruit shape is one of the most important quality traits of pepper (Capsicum spp.) and is used as a major attribute for the classification of fruit types. Wide natural variation in fruit shape exists among the major cultivated species Capsicum annuum, allowing the identification of several QTLs controlling the trait. However, to date, no genes underlying fruit shape QTLs have been conclusively identified, nor has their function been verified in pepper. We constructed a mapping population from a cross of round- and elongated-fruited C. annuum parents and identified a single major QTL on chromosome 10, termed fs10, explaining 68 and 70% of the phenotypic variation for fruit shape index and for distal fruit end angle, respectively. The QTL was mapped in several generations and was localized to a 5 Mbp region containing the ortholog of SlOFP20 that suppresses fruit elongation in tomato. Virus-induced gene silencing of the pepper ortholog CaOFP20 resulted in increased fruit elongation on two independent backgrounds. Furthermore, CaOFP20 exhibited differential expression in fs10 near-isogenic lines, as well as in an association panel of elongated- and round-fruited accessions. A 42-bp deletion in the upstream region of CaOFP20 was most strongly associated with fruit shape variation within the locus. Histological observations in ovaries and fruit pericarps indicated that fs10 exerts its effect on fruit elongation by controlling cell expansion and replication. Our results indicate that CaOFP20 functions as a suppressor of fruit elongation in C. annuum and is the most likely candidate gene underlying fs10.


2022 ◽  
Vol 17 (4) ◽  
pp. 898
Author(s):  
An-Mu Xie ◽  
Jing Wang ◽  
Xiao-Na Zhang ◽  
Jin-Ni Fang ◽  
Fei-Fei Hua ◽  
...  

2021 ◽  
Author(s):  
Mustafa Elhag ◽  
Abdelrahman Hamza Abdelmoneim ◽  
Anfal Osama Sati ◽  
Moaaz Mohammed Saadaldin ◽  
Nagla Mohammad Ahmad ◽  
...  

Brucella abortus is a small aerobic, non-spore-forming, non-motile intracellular coccobacilli localized in the reproductive organs of host animals and causes acute or chronic disorders. It infects approximately 200 cases per 100,000 of the population and has become endemic in many countries. OmpW family protein is an outer membrane protein involved in the initial interaction between the pathogen and its host. This study predicts an effective epitope-based vaccine against OmpW family protein of Brucella abortus using immunoinformatics tools. Sequences were obtained from NCBI and prediction tests were accomplished to analyze possible epitopes for B and T cells. Seven B cell epitopes passed the antigenicity, accessibility and hydrophilicity tests. Forty-three MHC I epitopes were the most promising, while 438 from MHC II. For the population coverage, the epitopes covered 99.97% of the alleles worldwide excluding certain MHC II alleles. We recommend invivo and invitro studies to prove its effectiveness.


2021 ◽  
Author(s):  
Hector Flores‐Romero ◽  
Lisa Hohorst ◽  
Malina John ◽  
Marie‐Christine Albert ◽  
Louise E King ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (24) ◽  
pp. 13505
Author(s):  
Shin-ichi Muroi ◽  
Yoichiro Isohama

Aquaporin-5 (AQP5) is selectively expressed in the apical membrane of exocrine glands, such as salivary, sweat, and submucosal airway glands, and plays important roles in maintaining their secretory functions. Because AQP5 is not regulated by gating, localization on the plasma membrane is important for its water-permeable function. Ezrin is an ezrin–radixin–moesin family protein that serves as a crosslinker between the plasma membrane and actin cytoskeleton network. It plays important roles in translocation of various membrane proteins to mediate vesicle trafficking to the plasma membrane. In this study, we examined the effects of ezrin inhibition on membrane trafficking of AQP5. Ezrin inhibition selectively suppressed an ionomycin-induced increase in AQP5 translocation to the plasma membrane of mouse lung epithelial cells (MLE-12) without affecting the steady-state level of plasma membrane AQP5. Taken together, our data suggest that AQP5 translocates to the plasma membrane through at least two pathways and that ezrin is selectively involved in a stimulation-dependent pathway.


2021 ◽  
Vol 22 (24) ◽  
pp. 13338
Author(s):  
Qing Zhang ◽  
Jin Jiang

The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis in species ranging from insects to mammals. Deregulation of Hh pathway activity has been implicated in a wide range of human disorders, including congenital diseases and cancer. Hh exerts its biological influence through a conserved signaling pathway. Binding of Hh to its receptor Patched (Ptc), a twelve-span transmembrane protein, leads to activation of an atypical GPCR family protein and Hh signal transducer Smoothened (Smo), which then signals downstream to activate the latent Cubitus interruptus (Ci)/Gli family of transcription factors. Hh signal transduction is regulated by ubiquitination and deubiquitination at multiple steps along the pathway including regulation of Ptc, Smo and Ci/Gli proteins. Here we review the effect of ubiquitination and deubiquitination on the function of individual Hh pathway components, the E3 ubiquitin ligases and deubiquitinases involved, how ubiquitination and deubiquitination are regulated, and whether the underlying mechanisms are conserved from Drosophila to mammals.


2021 ◽  
pp. 153537022110618
Author(s):  
Mao Li ◽  
Xingfeng Xu ◽  
Yan Su ◽  
Xiaoyun Shao ◽  
Yali Zhou ◽  
...  

PPM1A (magnesium-dependent phosphatase 1 A, also known as PP2Cα) is a member of the Ser/Thr protein phosphatase family. Protein phosphatases catalyze the removal of phosphate groups from proteins via hydrolysis, thus opposing the role of protein kinases. The PP2C family is generally considered a negative regulator in the eukaryotic stress response pathway. PPM1A can bind and dephosphorylate various proteins and is therefore involved in the regulation of a wide range of physiological processes. It plays a crucial role in transcriptional regulation, cell proliferation, and apoptosis and has been suggested to be closely related to the occurrence and development of cancers of the lung, bladder, and breast, amongst others. Moreover, it is closely related to certain autoimmune diseases and neurodegenerative diseases. In this review, we provide an insight into currently available knowledge of PPM1A, including its structure, biological function, involvement in signaling pathways, and association with diseases. Lastly, we discuss whether PPM1A could be targeted for therapy of certain human conditions.


Sign in / Sign up

Export Citation Format

Share Document