Recycling of mercury from the atmosphere-ocean system into volcanic-arc–associated epithermal gold systems

Geology ◽  
2020 ◽  
Author(s):  
Changzhou Deng ◽  
Guangyi Sun ◽  
Yimeng Rong ◽  
Ruiyang Sun ◽  
Deyou Sun ◽  
...  

Photochemical processes generate mass-independent fractionation (MIF) of mercury (Hg) isotopes in the atmosphere-ocean system, and the subduction of marine sediments or hydrated oceanic crust may recycle the resultant Hg isotope signature into the volcanic-arc environment. This environment typically hosts epithermal gold deposits, which are characterized by a specific Hg-Sb-As metal association. We investigated the Hg isotopic composition of seven volcanic-arc–related epithermal gold deposits in northeast China and revisited the isotopic composition of Hg in hydrothermal ore deposits in circum-Pacific and Mediterranean volcanic arcs. The gold ore samples in northeast China mostly display positive Δ199Hg values (0.11‰ ± 0.07‰, 1σ, n = 48) similar to those observed in the Pacific Rim (0.07‰ ± 0.09‰, 1σ, n = 182) and the Mediterranean Cenozoic volcanic belt (0.09‰ ± 0.08‰, 1σ, n = 9). Because Hg in marine sediments and seawater has positive Δ199Hg, we infer that Hg-bearing epithermal deposits in active continental margin settings receive most Hg from recycled seawater in marine sediments, through the release of Hg by dehydration from the subducting oceanic slab. However, negative to near-zero Δ199Hg values were observed in Hg-bearing deposits in the South China craton (–0.09‰ ± 0.05‰, 1σ, n = 105) and in the intraplate magmatic-hydrothermal Almadén Hg deposit in Spain (–0.02‰ ± 0.06‰, 1σ, n = 26), which are considered to relate to basement and mantle sources, respectively. Hg isotopes have the potential to trace lithospheric Hg cycling.

1989 ◽  
Vol 20 (2) ◽  
pp. 99 ◽  
Author(s):  
S.S. Webster ◽  
R.W. Henley

High resolution airborne geophysical data over broad areas have been found to optimize exploration for epithermal gold deposits in differing geological environments.Genetic exploration models may be tested in favourable sites by the recognition of geophysical signatures. These signatures reflect structural, lithological and alteration patterns arising from controls on ore deposits and can be applied at regional or detailed scales, using the same data set.At regional scale (e.g. 1:100,000) the magnetic data reflect the regional tectonics and divide the area into domains for the application of appropriate genetic models. At prospect scale (e.g. 1:25,000) the radiometric data allow the extrapolation of poorly outcropping geology to provide a cost-effective mapping technique. The magnetic data can be used to supplement this interpretation or can be used to target deeper sources for direct investigation by drilling.


2012 ◽  
Vol 55 (3) ◽  
pp. 287-310 ◽  
Author(s):  
Shi-Jiong Han ◽  
Jing-Gui Sun ◽  
Ling-An Bai ◽  
Shu-Wen Xing ◽  
Peng Chai ◽  
...  

2020 ◽  
Author(s):  
Changzhou Deng ◽  
Runsheng Yin ◽  
et al.

Geological background, samples and methods, and analytical results for hydrothermal Au deposits in northeast China.<br>


2021 ◽  
Vol 906 (1) ◽  
pp. 012011
Author(s):  
Valery Y. Fridovsky ◽  
Maxim Kudrin

Abstract The paper presents the first results of investigation of the Re–Os isotope system of native gold from the Malo-Tarynskoe, Khangalas, Bazovskoe, and chalcopyrite from the Dvoinoe orogenic gold deposits and stibnite from the Maltan Au-Sb depositin the Kular–Nera terrane, Northeast Asia. The deposits are spatially related to NW-trending lithospheric-scale major brittle faults or controlled by subsidiary faults and fracture zones. Such zones served as pathways for fluids rising from below the crust, and they have a long tectonic and reactivation history. The Kular–Nera terrane consists of Upper Permian, Triassic, and Lower Jurassic clastic sedimentary-rock sequences, metamorphosed to initial stages of greenschist facies. Magmatism is manifested by Kimmeridgian–Berriasian S- and I-types granitoids and mafic dikes of the Tas–Kystabyt magmatic belt. Re concentration in gold varies from 0.168 to 6.997 ppb, and that of osmium – from 0.068 to 1.443 ppb. Chalcopyrite from the Dvoinoe deposit occurrence contains 0.1522 ppb Re and 0.499 ppb Os. Stibnite from the Maltan Au-Sb depositoccurrence contains 0. 236 ppb Re and 0.903 ppb Os. The Re–Os ages of gold from the Malo-Tarynskoe (147.8 ± 3.8 Ma) and Bazovskoe (147.2 ± 1.8 Ma) and Khangalas (137.1 ± 7.6 Ma) orogenic deposits and the Maltan Au-Sb deposits (69.7±1.9 Ma) are determined. Malo-Tarynskoe and Bazovskoe represent the earliest known orogenic gold mineralization in the Kular–Nera terrane. The data obtained permit us to correlate the initiation of orogenic gold-ore systems with the completion of the formation at the end of the Late Jurassic Uyandina–Yasachnaya volcanic belt, crystallization and subsequent cooling in the Late Jurassic–early Early Cretaceous of granitoid massifs of the Tas-Kystabyt magmatic belt, and subduction–accretionary events at the northeastern active continental margin of the Siberian craton. Maltan Au-Sb deposit is related to completion of the formation of the Albian-Late Cretaceous Okhotsk–Chukotka volcano-plutonic belt. Contrasting mantle and/or crustal sources of ore-forming material are established. The osmium initial isotopic ratio in gold 187Os/188Os = 0.2210-0.4275 and antimonite (0,2543-0,2976) is typical for the ore-forming material from the fertile mantle reservoir, and for chalcopyrite (3.1904) – from the crust.


2020 ◽  
Author(s):  
Changzhou Deng ◽  
Runsheng Yin ◽  
et al.

Geological background, samples and methods, and analytical results for hydrothermal Au deposits in northeast China.<br>


2021 ◽  
Vol 116 (6) ◽  
pp. 1253-1265
Author(s):  
Xiao-Ye Jin ◽  
Jian-Xin Zhao ◽  
Yue-Xing Feng ◽  
Albert H. Hofstra ◽  
Xiao-Dong Deng ◽  
...  

Abstract The ages of Carlin-type gold deposits in the Golden Triangle of South China have long been questioned due to the general lack of minerals unequivocally linked to gold deposition that can be precisely dated using conventional radiogenic isotope techniques. Recent advances in U-Pb methods show that calcite can be used to constrain the ages of hydrothermal processes, but few studies have been applied to ore deposits. Herein, we show that this approach can be used to constrain the timing of hydrothermal activity that generated and overprinted the giant Shuiyindong Carlin-type gold deposit in the Golden Triangle. Three stages of calcite (Cal-1, Cal-2, and Cal-3) have been recognized in this deposit based on crosscutting relationships, cathodoluminescence colors, and chemical (U, Pb, and rare earth element [REE]) and isotope (C, O, Sr) compositions. Cal-1 is texturally associated with ore-stage jasperoid and disseminated Au-bearing arsenian pyrite in hydrothermally altered carbonate rocks, which suggests it is synmineralization. Cal-2 fills open spaces and has a distinct orange cathodoluminescence, suggesting that it precipitated during a second fluid pulse. Cal-1 and Cal-2 have similar carbonate rock-buffered chemical and isotopic compositions. Cal-3 occurs in veins that often contain realgar and/or orpiment and are chemically (low U, Pb, and REE) and isotopically (higher δ13C, lower δ18O and Sri values) distinct from Cal-1 and Cal-2, suggesting that it formed from a third fluid. U-Pb isotope analyses, by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for U-rich Cal-1 and Cal-2 and by LA-multicollector (MC)-ICP-MS for U-poor Cal-3, yield well-defined age constraints of 204.3 to 202.6, 191.9, and 139.3 to 137.1 Ma for Cal-1, Cal-2, and Cal-3, respectively. These new ages suggest that the Shuiyindong gold deposit formed in the late Triassic and was overprinted by hydrothermal events in the early Jurassic and early Cretaceous. Given the association of Cal-3 with orpiment and realgar, and previous geochronologic studies of several other major gold deposits in the Golden Triangle, we infer that the latest stage of calcite may be associated with an early Cretaceous regional gold metallogenic event. Combined with existing isotopic ages in the region, these new ages lead us to propose that Carlin-type gold deposits in the Golden Triangle formed during two metallogenic episodes in extensional settings, associated with the late Triassic Indochina orogeny and early Cretaceous paleo-Pacific plate subduction. This study shows that the calcite U-Pb method can be used to constrain the timing of Carlin-type gold deposits and successive hydrothermal events.


2019 ◽  
Vol 484 (4) ◽  
pp. 460-463
Author(s):  
N. A. Goryachev ◽  
A. V. Ignatiev ◽  
T. A. Velivetskaya ◽  
A. E. Budyak ◽  
Yu. I. Tarasova

The experience of LA—ICP determining of the isotopic composition of sulfur pyrite and arsenopyrite of gold deposits of the Baikal-patomsky plateau is considered. The technique is characterized. It is shown that all the studied samples have values δ34S and δ33S strictly corresponding to the law of mass-dependent fractionation of sulfur isotopes. A regular alleviation of the isotopic composition of sulfur of pyrite as its crystals grow for Sukhoi Log and the isotopic homogeneity of pyrite and pyrrhotite of the Golets Vysokhashiy deposit are established. It is concluded that the possible role of metamorphism of the Mamsko-Oronsky belt in the formation of isotopic homogeneity of ore sulfides.


Sign in / Sign up

Export Citation Format

Share Document