Study of an optimal control problem related to the Solow control model

2016 ◽  
Vol 292 (S1) ◽  
pp. 231-237 ◽  
Author(s):  
M. S. Nikol’skii
2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Lei Wang ◽  
Zhilong Xiu ◽  
Yuduo Zhang ◽  
Enmin Feng

In batch culture of glycerol biodissimilation to 1,3-propanediol (1,3-PD), the aim of adding glycerol is to obtain as much 1,3-PD as possible. Taking the yield intensity of 1,3-PD as the performance index and the initial concentration of biomass, glycerol, and terminal time as the control vector, we propose an optimal control model subject to a multistage nonlinear dynamical system and constraints of continuous state. A computational approach is constructed to seek the solution of the above model. Firstly, we transform the optimal control problem into the one with fixed terminal time. Secondly, we transcribe the optimal control model into an unconstrained one based on the penalty functions and an extension of the state space. Finally, by approximating the control function with simple functions, we transform the unconstrained optimal control problem into a sequence of nonlinear programming problems, which can be solved using gradient-based optimization techniques. The convergence analysis and optimality function of the algorithm are also investigated. Numerical results show that, by employing the optimal control, the concentration of 1,3-PD at the terminal time can be increased, compared with the previous results.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Sign in / Sign up

Export Citation Format

Share Document