scholarly journals P07.01 A modular and controllable T cell therapy platform for AML

2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A22.2-A23
Author(s):  
M Benmebarek ◽  
B Loureiro Cadilha ◽  
M Herrmann ◽  
S Schmitt ◽  
S Lesch ◽  
...  

BackgroundTargeted immunotherapies have shown limited success in the context of acute myeloid leukemia (AML). The mutational landscape, heterogeneity attributed to this malignancy and toxicities associated with the targeting of myeloid lineage antigens, it has become apparent that a modular and controllable cell therapy approach with the potential to target multiple antigens is required. We propose a controlled ACT approach, where T cells are equipped with synthetic agonistic receptors (SARs) that are selectively activated only in the presence of a target AML-associated antigen, and a cross-linking tandem single chain variable fragment (taFv) specific for both (SAR) T cell and tumour cell.Materials and MethodsA SAR composed of an extracellular EGFRvIII, trans- membrane CD28, and intracellular CD28 and CD3z domains was fused via overlap- extension PCR cloning. T cells were retrovirally transduced to stably express our SAR construct. SAR-specific taFvs that target AML-associated antigens were designed and expressed in Expi293FTM cells and purified by nickel affinity and size exclusion chromatography (SEC). We validated our approach in three human cancer models and patient-derived AML blasts expressing our AML-associated target antigens CD33 and CD123.ResultsAnti-CD33-EGFRvIII and anti-CD123 EGFRvIII taFv, monovalently selective for our SAR, induced conditional antigen-dependent activation, proliferation and differentiation of SAR-T cells. Further, SAR T cells bridged to their target cells by taFv could form functional immunological synapses, resulting in efficient tumor cell lysis with specificity towards CD33-expressing AML cells. SAR-taFv combination could also mediate specific cytotoxicity against patient-derived AML blasts and leukemic stem cells whilst driving SAR T cell activation. In vivo, treatment with SAR-taFv combination could efficiently eradicate leukemia and enhance survival in an AML xenograft models. Furthermore, we could show selective activation of SAR T cells, as well as a controllable reversibility and modularity of said activation upon depletion of the T cell engaging molecule, both in vitro and in vivo.ConclusionsHere we apply the SAR-taFv platform in efforts to deliver specific and conditional activation of SAR-transduced T cells, and targeted tumour cell lysis. The modularity of our platform will allow for a multi-targeting ACT approach with the potential to translate the ACT successes of B cell malignancies to AML. With a lack of truly specific AML antigens, it is invaluable that this approach possesses an intrinsic safety switch via its taFv facet. Moreover, we are able to circumvent pan-T cell activation due to the specific targeting and activation of SAR T cells.Disclosure InformationM. Benmebarek: None. B. Loureiro Cadilha: None. M. Herrmann: None. S. Schmitt: None. S. Lesch: None. S. Stoiber: None. A. Darwich: None. C. Augsberger: None. B. Brauchle: None. M. Schwerdtfeger: None. A. Gottschlich: None. A. Gottschlich Rataj: None. N.C. Fenn: None. C. Klein: None. M. Subklewe: None. S. Endres: None. K. Hopfner: None. S. Kobold: None.

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A2.2-A3
Author(s):  
M Benmebarek ◽  
BL Cadilha ◽  
M Hermann ◽  
S Lesch ◽  
C Augsburger ◽  
...  

BackgroundTargeted immunotherapies have shown limited success in the context of acute myeloid leukemia (AML). Due to the mutational landscape and heterogeneity attributed to this malignancy and toxicities associated with the targeting of myeloid lineage antigens, it has become apparent that a modular and controllable cell therapy approach with the potential to target multiple antigens is required. We propose a controlled ACT approach, where T cells are armed with synthetic agonistic receptors (SARs) that are conditionally activated only in the presence of a target AML-associated antigen, and a cross-linking bispecific T cell engager (BiTE) specific for both (SAR) T cell and tumour cell.Materials and MethodsA SAR composed of an extracellular EGFRvIII, trans-membrane CD28, and intracellular CD28 and CD3z domains was fused via overlap-extension PCR cloning. T cells were retrovirally transduced to stably express our SAR construct. SAR-specific bispecific T cell engagers (BiTE) that target AML-associated antigens were designed and expressed in Expi293FTMcells and purified by nickel affinity and size exclusion chromatography (SEC). We validated our approach in three human cancer models and patient-derived AML blasts expressing our AML-associated target antigen CD33.ResultsCD33-EGFRvIII BiTE, monovalently selective for our SAR, induced conditional antigen-dependent activation, proliferation and differentiation of SAR-T cells. Further, SAR T cells bridged to their target cells by BiTE could form functional immunological synapses, resulting in efficient tumor cell lysis with specificity towards CD33-expressing AML cells. SAR.BiTE combination could also mediate specific cytotoxicity against patient-derived AML blasts whilst driving SAR T cell activation. In vivo, treatment with SAR.BiTE combination could efficiently eradicate leukemia and enhance survival in an AML xenograft model. Furthermore, we could show selective activation of SAR T cells, as well as a controllable reversibility of said activation upon depletion of the T cell engaging molecule.ConclusionsHere we apply the SAR x BiAb approach in efforts to deliver specific and conditional activation of agonistic receptor-transduced T cells, and targeted tumour cell lysis. The modularity of our platform will allow for a multi-targeting ACT approach with the potential to translate the ACT successes of B cell malignancies to AML. With a lack of truly specific AML antigens, it is invaluable that this approach possesses an intrinsic safety switch via its BiTE facet. Moreover, we are able to circumvent pan-T cell activation due to the specific targeting and activation of SAR T cells.Disclosure InformationM. Benmebarek: None. B.L. Cadilha: None. M. Hermann: None. S. Lesch: None. C. Augsburger: None. B. Brauchle: None. S. Stoiber: None. A. Darwich: None. F. Rataj: None. C. Klein: A. Employment (full or part-time); Significant; Roche. K. Hopfner: None. M. Subklewe: None. S. Endres: None. S. Kobold: None.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3889-3889
Author(s):  
Klaus Brischwein ◽  
Scott A. Hammond ◽  
Larissa Parr ◽  
Schlereth Bernd ◽  
Mathias Locher ◽  
...  

Abstract Background: Bispecific antibodies have been extensively studied in vitro and in vivo for their use in redirected tumor cell lysis. A particular challenge of bispecific antibody constructs recognizing the CD3 signaling complex is to achieve a controlled polyclonal activation of T-cells that, ideally, is entirely dependent on the presence of target cells. If this is not the case, systemic production of inflammatory cytokines and secondary endothelial reactions may occur as side effects, as are observed with the murine anti-human CD3e antibody OKT-3 (muromab, Orthoclone®). Here we present evidence that MT103 (or MEDI-538), a bispecific single chain antibody of the BiTE class that targets CD19 and CD3, induces T-cell activation exclusively in the presence of target cells. Material and methods: Peripheral blood mononuclear cells from healthy donors were prepared by Ficoll density centrifugation. PBMC were incubated for 24 hours with MT103 in presence or absence of specific target cells. Target cell lysis was determined by measurement of adenylate kinase activity released from lysed cells. De novo expression of activation markers CD69 and CD25 on T-cells was assessed by flow cytometry using directly conjugated monoclonal antibodies, and the concentration of cytokines in the supernatant was determined by a commercial FACS-based bead array. Results: MT103 was analyzed for conditional T-cell activation. In the presence of target-expressing cell lines, low picomolar concentrations of MT103 were sufficient to stimulate a high percentage of peripheral human T-cells to express cytokines and surface activation markers, to enter into the cell cycle and to induce redirected lysis of target cells. However, in the absence of target cells, the BiTE molecules no longer detectably activated human T-cells even at concentrations exceeding the ED50 for redirected lysis and conditional T-cell activation by more than five orders of magnitude. Conclusion: Our data show that T-cell activation by MT103 is highly conditional in that it is strictly dependent on the presence.


Blood ◽  
2008 ◽  
Vol 111 (9) ◽  
pp. 4588-4595 ◽  
Author(s):  
Beatrice Bolinger ◽  
Philippe Krebs ◽  
Yinghua Tian ◽  
Daniel Engeler ◽  
Elke Scandella ◽  
...  

Abstract Endothelial cells (ECs) presenting minor histocompatibility antigen (mhAg) are major target cells for alloreactive effector CD8+ T cells during chronic transplant rejection and graft-versus-host disease (GVHD). The contribution of ECs to T-cell activation, however, is still a controversial issue. In this study, we have assessed the antigen-presenting capacity of ECs in vivo using a transgenic mouse model with beta-galactosidase (β-gal) expression confined to the vascular endothelium (Tie2-LacZ mice). In a GVHD-like setting with adoptive transfer of β-gal–specific T-cell receptor–transgenic T cells, β-gal expression by ECs was not sufficient to either activate or tolerize CD8+ T cells. Likewise, transplantation of fully vascularized heart or liver grafts from Tie2-LacZ mice into nontransgenic recipients did not suffice to activate β-gal–specific CD8+ T cells, indicating that CD8+ T-cell responses against mhAg cannot be initiated by ECs. Moreover, we could show that spontaneous activation of β-gal–specific CD8+ T cells in Tie2-LacZ mice was exclusively dependent on CD11c+ dendritic cells (DCs), demonstrating that mhAgs presented by ECs remain immunologically ignored unless presentation by DCs is granted.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3041-3041
Author(s):  
Jenny Mu ◽  
Justin Edwards ◽  
Liubov Zaritskaya ◽  
Jeffrey Swers ◽  
Ankit Gupta ◽  
...  

3041 Background: Conventional chimeric antigen receptor T cell (CAR-T) therapies have achieved limited clinical success in the treatment of solid tumors, in part due to the challenges of identifying tumor antigen(s) that are uniquely expressed on tumor cells. The dearth of such targets requires that current CAR-T therapies be re-engineered to preferentially target tumor cells thereby mitigating potential on-target off-tumor toxicity to normal cells. Herein we describe a novel cell therapy platform comprising Antigen Receptor Complex T (ARC-T) cells that are readily activated, silenced, and reprogrammed in vivo by administration of a novel tumor-targeting soluble protein antigen-receptor X-linker (sparX). The formation of the ARC-T, sparX, and tumor complex is required for the ARC-T to kill the tumor. Because ARC-T activity is entirely dependent on the dose of sparX administered, therapeutic doses of sparX may be defined that preferentially target cells over-expressing a target antigen and thus limit coincident kill of normal cells expressing lower levels of target antigen. Methods: We have created a library of sparX that bind different cell surface antigens, including HER2. The HER2 sparX was tested as both monovalent and bivalent constructs in vitro by assessing ARC-T cell activation, cytokine release and target cell cytotoxicity. In vivo efficacy models utilized NSG mice and incorporated tumor volume measurements and histopathologic assessments to evaluate tumor clearance. Results: In vitro studies demonstrate that co-culture of ARC-T cells, sparX-HER2 and HER2-expressing target cells drives T cell activation, expansion, cytokine secretion and cytotoxicity of target cells in a dose-dependent manner. Furthermore, by affinity tuning the HER2 binding domain and bivalent formatting of sparX-HER2, we achieved selective killing of HER2-overexpressing breast cancer cells with minimal effect on cells expressing HER2 levels representative of normal tissues. In vivo proof-of-principal studies with ARC-T/sparX-HER2 similarly demonstrate complete eradication of HER2-overexpressing solid tumor cells. Conclusions: These results demonstrate that a single intravenous dose of ARC-T cells can traffic to a solid tumor site and induce tumor eradication upon systemic administration and co-localization of tumor-targeting sparX in a mouse model. Bivalent formatting of sparX-HER2 further enabled ARC-T sensitivity to target antigen density to avoid the on-target off-tumor toxicity that has hindered conventional monovalent CAR-T treatments.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3721-3721
Author(s):  
Eugene Zhukovsky ◽  
Uwe Reusch ◽  
Carmen Burkhardt ◽  
Stefan Knackmuss ◽  
Ivica Fucek ◽  
...  

Abstract Abstract 3721 Background: CD19 is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. T cells are potent tumor-killing effector cells that cannot be recruited by native antibodies. The CD3 RECRUIT-TandAb AFM11, a humanized bispecific tetravalent antibody with two binding sites for both CD3 and CD19, is a novel therapeutic for the treatment of NHL that harnesses the cytotoxic nature of T cells. Methods: We engineered a bispecific anti-CD19/anti-CD3e tetravalent TandAb with humanized and affinity-matured variable domains. The TandAb's binding properties, T cell-mediated cytotoxic activity, and target-mediated T cell activation were characterized in a panel of in vitro assays. In vivo efficacy was evaluated in a murine NOD/scid xenograft model reconstituted with human PBMC. Results: AFM11 mediates highly potent CD19+ tumor cell lysis in cytotoxicity assays performed on a panel of cell lines (JOK-1, Raji, Nalm-6, MEC-1, VAL, Daudi) and primary B-CLL tumors: EC50 values are in the low- to sub-picomolar range and do not correlate with the expression density of CD19 on the target cell lines. The cytotoxic activity of tetravalent AFM11 is superior to that of alternative bivalent antibody formats possessing only a single binding site for both CD19 and CD3. High affinity binding of AFM11 to CD19 and to CD3 is essential for efficacious T cell recruitment. Both CD8+ and CD4+ T cells mediate cytotoxicity however the former exhibit much faster killing. We observe that AFM11 displays similar cytotoxic efficacy at different effector to target ratios (from 5:1 to 1:5) in cytotoxicity assays; this suggests that T cells are engaged in the serial killing of CD19+ target cells. In the absence of CD19+ target cells in vitro, AFM11 does not elicit T cell activation as manifested by cytokine release (from a panel of ten cytokines associated with T cell activation), their proliferation, or their expression of activation markers. AFM11 activates T cells exclusively in the presence of its targets and mediates lysis of CD19+ cells while sparing antigen-negative bystanders. In the absence of CD19+ target cells, AFM11 concentrations in excess of 500-fold over EC50 induce down-modulation of the CD3/TCR complex. Yet, AFM11-treated T cells can be re-engaged for target cell lysis. All of these features of AFM11-induced T cell activation may contribute additional safety without compromising its efficacy. In vivo AFM11 demonstrates a robust dose-dependent inhibition of subcutaneous Raji tumors in mice. At 5 mg/kg AFM11 demonstrates a complete suppression of tumor growth, and even at 5 ug/kg tumor growth is reduced by 60%. Moreover, we observe that a single administration of AFM11 produces inhibition of tumor growth similar to that of 5 consecutive administrations. Conclusions: In summary, our in vitro and in vivo experiments with AFM11 demonstrate the high potency and efficacy of its anti-tumor cytotoxicity. Thus, AFM11 is a novel highly efficacious drug candidate for the treatment of B cell malignancies with an advantageous safety profile. Disclosures: Zhukovsky: Affimed Therapeutics AG: Employment, Equity Ownership. Reusch:Affimed Therapeutics AG: Employment. Burkhardt:Affimed Therapeutics AG: Employment. Knackmuss:Affimed Therapeutics AG: Employment. Fucek:Affimed Therapeutics AG: Employment. Eser:Affimed Therapeutics AG: Employment. McAleese:Affimed Therapeutics AG: Employment. Ellwanger:Affimed Therapeutics AG: Employment.


Blood ◽  
2003 ◽  
Vol 102 (2) ◽  
pp. 564-570 ◽  
Author(s):  
Bernard Vanhove ◽  
Geneviève Laflamme ◽  
Flora Coulon ◽  
Marie Mougin ◽  
Patricia Vusio ◽  
...  

Abstract B7-1 and B7-2 are costimulatory molecules expressed on antigen-presenting cells. The CD28/B7 costimulation pathway is critical for T-cell activation, proliferation, and Th polarization. Blocking both cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and CD28 interactions with a CTLA-4/Ig fusion protein inhibits various immune-mediated processes in vivo, such as allograft rejection and autoimmunity. However, selective blockade of CD28 may represent a better strategy for immunosuppression than B7 blockade, because CTLA-4/B7 interactions have been shown to participate in the extinction of the T-cell receptor–mediated activation signal and to be required for the induction of immunologic tolerance. In addition, selective CD28 inhibition specifically decreases the activation of alloreactive and autoreactive T cells, but not the activation of T cells stimulated by exogenous antigens presented in the context of self major histocompatibility complex (MHC) molecules. CD28 blockade cannot be obtained with anti-CD28 dimeric antibodies, which cluster their target and promote T-cell costimulation, whereas monovalent Fab fragments can block CD28 and reduce alloreactivity. In this study, we report the construction of a monovalent single-chain Fv antibody fragment from a high-affinity antihuman CD28 antibody (CD28.3) that blocked adhesion of T cells to cells expressing the CD28 receptor CD80. Genetic fusion with the long-lived serum protein α1-antitrypsin led to an extended half-life without altering its binding characteristics. The anti-CD28 fusion molecule showed biologic activity as an immuno-suppressant by inhibiting T-cell activation and proliferation in a mixed lymphocyte reaction.


2021 ◽  
Vol 9 (5) ◽  
pp. e001925
Author(s):  
Shujuan Zhou ◽  
Fanyan Meng ◽  
Shiyao Du ◽  
Hanqing Qian ◽  
Naiqing Ding ◽  
...  

BackgroundPoor infiltration and limited activation of transferred T cells are fundamental factors impeding the development of adoptive cell immunotherapy in solid tumors. A tumor-penetrating peptide iRGD has been widely used to deliver drugs deep into tumor tissues. CD3-targeting bispecific antibodies represent a promising immunotherapy which recruits and activates T cells.MethodsT-cell penetration was demonstrated in tumor spheroids using confocal microscope, and in xenografted tumors by histology and in vivo real-time fluorescence imaging. Activation and cytotoxicity of T cells were assessed by flow cytometry and confocal microscope. Bioluminescence imaging was used to evaluate in vivo antitumor effects, and transmission electron microscopy was used for mechanistic studies.ResultsWe generated a novel bifunctional agent iRGD-anti-CD3 which could immobilize iRGD on the surface of T cells through CD3 engaging. We found that iRGD-anti-CD3 modification not only facilitated T-cell infiltration in 3D tumor spheroids and xenografted tumor nodules but also induced T-cell activation and cytotoxicity against target cancer cells. T cells modified with iRGD-anti-CD3 significantly inhibited tumor growth and prolonged survival in several xenograft mouse models, which was further enhanced by the combination of programmed cell death protein 1 (PD-1) blockade. Mechanistic studies revealed that iRGD-anti-CD3 initiated a transport pathway called vesiculovacuolar organelles in the endothelial cytoplasm to promote T-cell extravasation.ConclusionAltogether, we show that iRGD-anti-CD3 modification is an innovative and bifunctional strategy to overcome major bottlenecks in adoptive cell therapy. Moreover, we demonstrate that combination with PD-1 blockade can further improve antitumor efficacy of iRGD-anti-CD3-modified T cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadine Aschmoneit ◽  
Sophia Steinlein ◽  
Lennart Kühl ◽  
Oliver Seifert ◽  
Roland E. Kontermann

AbstractHER3 is a member of the EGF receptor family and elevated expression is associated with cancer progression and therapy resistance. HER3-specific T-cell engagers might be a suitable treatment option to circumvent the limited efficacy observed for HER3-blocking antibodies in clinical trials. In this study, we developed bispecific antibodies for T-cell retargeting to HER3-expressing tumor cells, utilizing either a single-chain diabody format (scDb) with one binding site for HER3 and one for CD3 on T-cells or a trivalent bispecific scDb-scFv fusion protein exhibiting an additional binding site for HER3. The scDb-scFv showed increased binding to HER3-expressing cancer cell lines compared to the scDb and consequently more effective T-cell activation and T-cell proliferation. Furthermore, the bivalent binding mode of the scDb-scFv for HER3 translated into more potent T-cell mediated cancer cell killing, and allowed to discriminate between moderate and low HER3-expressing target cells. Thus, our study demonstrated the applicability of HER3 for T-cell retargeting with bispecific antibodies, even at moderate expression levels, and the increased potency of an avidity-mediated specificity gain, potentially resulting in a wider safety window of bispecific T-cell engaging antibodies targeting HER3.


1997 ◽  
Vol 186 (10) ◽  
pp. 1787-1791 ◽  
Author(s):  
Pan Zheng ◽  
Yang Liu

It has been proposed that some bystander T cell activation may in fact be due to T cell antigen receptor (TCR) cross-reactivity that is too low to be detected by the effector cytotoxic T lymphocyte (CTL). However, this hypothesis is not supported by direct evidence since no TCR ligand is known to induce T cell proliferation and differentiation without being recognized by the effector CTL. Here we report that transgenic T cells expressing a T cell receptor to influenza virus A/NT/68 nucleoprotein (NP) 366-374:Db complexes clonally expand and become effector CTLs in response to homologous peptides from either A/PR8/34 (H1N1), A/AA/60 (H2N2), or A/NT/68 (H3N2). However, the effector T cells induced by each of the three peptides kill target cells pulsed with NP peptides from the H3N2 and H2N2 viruses, but not from the H1N1 virus. Thus, NP366–374 from influenza virus H1N1 is the first TCR ligand that can induce T cell proliferation and differentiation without being recognized by CTLs. Since induction of T cell proliferation was mediated by antigen-presenting cells that express costimulatory molecules such as B7, we investigated if cytolysis of H1N1 NP peptide–pulsed targets can be restored by expressing B7-1 on the target cells. Our results revealed that this is the case. These data demonstrated that costimulatory molecule B7 modulates antigen specificity of CTLs, and provides a missing link that explains some of the bystander T cell activation.


Sign in / Sign up

Export Citation Format

Share Document