scholarly journals Heterogeneous Multiscale Method for Maxwell's Equations

2019 ◽  
Vol 17 (4) ◽  
pp. 1147-1171 ◽  
Author(s):  
Marlis Hochbruck ◽  
Bernhard Maier ◽  
Christian Stohrer
2016 ◽  
Vol 54 (6) ◽  
pp. 3493-3522 ◽  
Author(s):  
Patrick Henning ◽  
Mario Ohlberger ◽  
Barbara Verfürth

2019 ◽  
Vol 53 (1) ◽  
pp. 35-61 ◽  
Author(s):  
Barbara Verfürth

In this paper, we suggest a new Heterogeneous Multiscale Method (HMM) for the (time-harmonic) Maxwell scattering problem with high contrast. The method is constructed for a setting as in Bouchitté, Bourel and Felbacq [C.R. Math. Acad. Sci. Paris347(2009) 571–576], where the high contrast in the parameter leads to unusual effective parameters in the homogenized equation. We present a new homogenization result for this special setting, compare it to existing homogenization approaches and analyze the stability of the two-scale solution with respect to the wavenumber and the data. This includes a new stability result for solutions to time-harmonic Maxwell’s equations with matrix-valued, spatially dependent coefficients. The HMM is defined as direct discretization of the two-scale limit equation. With this approach we are able to show quasi-optimality anda priorierror estimates in energy and dual norms under a resolution condition that inherits its dependence on the wavenumber from the stability constant for the analytical problem. This is the first wavenumber-explicit resolution condition for time-harmonic Maxwell’s equations. Numerical experiments confirm our theoretical convergence results.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. E259-E276
Author(s):  
Wenke Wilhelms ◽  
Christoph Schwarzbach ◽  
Luz Angélica Caudillo-Mata ◽  
Eldad Haber

We have developed a mimetic multiscale method to simulate quasistatic Maxwell’s equations in the frequency domain. This is especially useful for extensive geophysical models that include small-scale features. Applying the concept of multiscale methods, we avoid setting up a large and costly system of equations on the fine mesh where the material parameters are discretized on. Instead, we build and solve a system on a much coarser mesh. For doing that, it is inevitable to interpolate between fine and coarse meshes. The construction of this coarse-to-fine interpolation is done by solving local, frequency-independent optimization problems for the electric field and the magnetic flux on each coarse cell incorporating the fine-mesh features. Hence, the interpolation operators transfer the fine-mesh material properties onto the coarse simulation mesh. To increase the accuracy of the interpolation, we apply oversampling; i.e., the coarse-cell optimization problems are solved on extended local domains. Previous work on multiscale methods for Maxwell’s equations is not capable of keeping the mimetic properties of the discretization. With our method being mimetic, the properties of the continuous differential operators are preserved in their discrete counterparts and thus, the resulting simulations do not contain spurious modes. We determine the effectiveness of our multiscale construction with coarse-mesh simulations for two examples: a vertical borehole and a mine model.


PIERS Online ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 355-360 ◽  
Author(s):  
Fethi Bin Muhammad Belgacem

2018 ◽  
Author(s):  
Glyn Kennell ◽  
Richard Evitts

The presented simulated data compares concentration gradients and electric fields with experimental and numerical data of others. This data is simulated for cases involving liquid junctions and electrolytic transport. The objective of presenting this data is to support a model and theory. This theory demonstrates the incompatibility between conventional electrostatics inherent in Maxwell's equations with conventional transport equations. <br>


Sign in / Sign up

Export Citation Format

Share Document