Protective effect of nitronyl nitroxide against hypoxia-induced damage in PC12 cells

2020 ◽  
Vol 98 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Hongbo Luo ◽  
Wei Sun ◽  
Jin Shao ◽  
Huiping Ma ◽  
Zhengping Jia ◽  
...  

Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. HPN (4′-hydroxyl-2-substituted phenyl nitronyl nitroxide), a stable nitronyl nitroxide, has excellent free radical scavenging properties. The purpose of this study was to investigate the protective effects of HPN on hypoxia-induced damage in PC12 cells. It was shown that HPN significantly attenuated hypoxia-induced loss of cell viability, release of lactate dehydrogenase (LDH), and morphological changes in PC12 cells. Moreover, hypoxic PC12 cells had increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), and expression of HIF-1α and VEGF, but had reduced levels of superoxide dismutase (SOD) and catalase (CAT), and HPN reversed these changes. HPN also inhibited hypoxia-induced cell apoptosis via suppressing the expression of Bax, cytochrome c, and caspase-3, and inducing the expression of Bcl-2. These results indicate that the protective effects of HPN on hypoxia-induced damage in PC12 cells is associated with the suppression of hypoxia-induced oxidative stress and cell apoptosis. HPN could be a promising candidate for the development of a novel neuroprotective agent.

2021 ◽  
pp. 096032712110237
Author(s):  
Y-J Li ◽  
D-Z Zhang ◽  
Y Xi ◽  
C-A Wu

Objective: To explore the mechanism of dexmedetomidine (DEX)-mediated miR-134 inhibition in hypoxia-induced damage in PC12 cells. Methods: Hydrogen peroxide (H2O2)-stimulated PC12 cells were divided into control, H2O2, DEX + H2O2, miR-NC/inhibitor + H2O2, and miR-NC/ mimic + DEX + H2O2 groups. Cell viability and apoptosis were assessed by the 3-(4,5-dimethylthiazol(-2-y1)-2,5-diphenytetrazolium bromide (MTT) assay and Annexin V-FITC/PI staining, while gene and protein expression levels were detected by qRT-PCR and western blotting. Reactive oxygen species (ROS) levels were tested by 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) staining, and malondialdehyde (MDA) content was determined with a detection kit. Results: DEX treatment decreased H2O2-elevated miR-134 expression. H2O2-induced PC12 cell damage was improved by DEX and miR-134 inhibitor; additionally, cell viability was increased, while cell apoptosis was reduced. In addition, both DEX and miR-134 inhibitor reduced the upregulated expression of cleaved caspase-3 and increased the downregulated expression of Bcl-2 in H2O2-induced PC12 cells. However, compared to that in the DEX + H2O2 group, cell viability in the mimic + DEX + H2O2 group was decreased, and the apoptotic rate was elevated with increased cleaved caspase-3 and decreased Bcl-2 expression. Inflammation and oxidative stress were increased in H2O2-induced PC12 cells but improved with DEX or miR-134 inhibitor treatment. However, this improvement of H2O2-induced inflammation and oxidative stress induced by DEX in PC12 cells could be reversed by the miR-134 mimic. Conclusion: DEX exerts protective effects to promote viability and reduce cell apoptosis, inflammation, and oxidative stress in H2O2-induced PC12 cells by inhibiting the expression of miR-134.


2010 ◽  
Vol 26 (5) ◽  
pp. 297-308 ◽  
Author(s):  
RM Satpute ◽  
J. Hariharakrishnan ◽  
R. Bhattacharya

Cyanide is a mitochondrial poison, which is ubiquitously present in the environment. Cyanide-induced oxidative stress is known to play a key role in mediating the neurotoxicity and cell death in rat pheochromocytoma (PC12) cells. PC12 cells are widely used as a model for neurotoxicity assays in vitro. In the present study, we investigated the protective effects of alpha-ketoglutarate (A-KG), a potential cyanide antidote, and N-acetyl cysteine (NAC), an antioxidant against toxicity of cyanide in PC12 cells. Cells were treated with various concentrations (0.625—1.25 mM) of potassium cyanide (KCN) for 4 hours, in the presence or absence of simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM). Cyanide caused marked decrease in the levels of cellular antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Lipid peroxidation indicated by elevated levels of malondialdehyde (MDA) was found to be accompanied by decreased levels of reduced glutathione (GSH) and total antioxidant status (TAS) of the cells. Cyanide-treated cells showed notable increase in caspase-3 activity and induction of apoptotic type of cell death after 24 hours. A-KG and NAC alone were very effective in restoring the levels of GSH and TAS, but together they significantly resolved the effects of cyanide on antioxidant enzymes, MDA levels, and caspase-3 activity. The present study reveals that combination of A-KG and NAC has critical role in abbrogating the oxidative stress-mediated toxicity of cyanide in PC12 cells. The results suggest potential role of A-KG and NAC in cyanide antagonism.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 951
Author(s):  
Hyung Don Kim ◽  
Ji Yeon Lee ◽  
Jeong-Yong Park ◽  
Dong Hwi Kim ◽  
Min Hye Kang ◽  
...  

(1) Background: Coreopsis lanceolata L. is a perennial plant of the family Asteraceae, and its flower is known to contain flavonoids with various bioactivities. We evaluated the effect of Coreopsis lanceolata L. flower (CLF) extracts on H2O2-induced oxidative stress (OS) in neuronal cells and mouse neurons. (2) Methods: The flowering part of CL was used as CLF1 (70% ethanol extract) and CLF2 (water extract), and 10 types of phenolic compounds were quantified using high-performance liquid chromatography. To evaluate the neuroprotective effects of CLF, the antioxidant activities of the extracts were measured, and the expression levels of antioxidant enzymes and proteins related to OS-induced apoptosis in neuronal cells and mouse neurons treated with the extracts were investigated. (3) Results: In the in vitro study, CLF ameliorated H2O2-induced oxidative stress and induced the expression of antioxidant enzymes in PC12 cells. Furthermore, CLF1 enhanced the expression of the Bcl-xL protein but reduced the expression of Bax and the cleavage of caspase-3. In the same manner, CLF1 showed neuroprotective effects against OS in vivo. Pretreatment with CLF1 (200 mg/kg) increased the Bcl-2 protein and decreased Bax compared with the 1-methyl-4-phenylpyridinium ion (MPP+)-treated C57BL/6 mice model group. Our results suggest that the protective effects of CLF1 on MPP+-induced apoptosis may be due to its anti-apoptotic activity, through regulating the expression of the Bcl-2 family. (4) Conclusions: CLF1 exerts neuroprotective effects against OS-induced apoptosis in PC12 cells in a Parkinson’s disease model mouse. This effect may be attributable to the upregulation of Bcl-2 protein expression, downregulation of Bax expression, and inhibition of caspase-3 activation. These data indicate that CLF may provide therapeutic value for the treatment of progressive neurodegenerative diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Meibian Hu ◽  
Yujie Liu ◽  
Liying He ◽  
Xing Yuan ◽  
Wei Peng ◽  
...  

Bombyx batryticatus is a known traditional Chinese medicine (TCM) utilized to treat convulsions, epilepsy, cough, asthma, headaches, and purpura in China for thousands of years. This study is aimed at investigating the antiepileptic effects of protein-rich extracts from Bombyx batryticatus (BBPs) on seizure in mice and exploring the protective effects of BBPs against H2O2-induced oxidative stress in PC12 cells and their underlying mechanisms. Maximal electroshock-induced seizure (MES) and pentylenetetrazole- (PTZ-) induced seizure in mice and the histological analysis were carried out to evaluate the antiepileptic effects of BBPs. The cell viability of PC12 cells stimulated by H2O2 was determined by MTT assay. The apoptosis and ROS levels of H2O2-stimulated PC12 cells were determined by flow cytometry analysis. Furthermore, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), lactate dehydrogenase (LDH), and glutathione (GSH) in PC12 cells were assayed by ELISA and expressions of caspase-3, caspase-9, Bax, Bcl-2, PI3K, Akt, and p-Akt were evaluated by Western blotting and quantitative real-time polymerase chain reaction (RT-qPCR) assays. The results revealed that BBPs exerted significant antiepileptic effects on mice. In addition, BBPs increased the cell viability of H2O2-stimulated PC12 cells and reduced apoptotic cells and ROS levels in H2O2-stimulated PC12 cells. By BBPs treatments, the levels of MDA and LDH were reduced and the levels of SOD and GSH-Px were increased in H2O2-stimulated PC12 cells. Moreover, BBPs upregulated the expressions of PI3K, Akt, p-Akt, and Bcl-2, whereas they downregulated the expressions of caspase-9, caspase-3, and Bax in H2O2-stimulated PC12 cells. These findings suggested that BBPs possessed potential antiepileptic effects on MES and PTZ-induced seizure in mice and protective effects on H2O2-induced oxidative stress in PC12 cells by exerting antioxidative and antiapoptotic effects via PI3K/Akt signaling pathways.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5408
Author(s):  
Xiyu Liao ◽  
Zhenjun Zhu ◽  
Shujian Wu ◽  
Mengfei Chen ◽  
Rui Huang ◽  
...  

Pleurotus geesteranus is a promising source of bioactive compounds. However, knowledge of the antioxidant behaviors of P. geesteranus protein hydrolysates (PGPHs) is limited. In this study, PGPHs were prepared with papain, alcalase, flavourzyme, pepsin, and pancreatin, respectively. The antioxidant properties and cytoprotective effects against oxidative stress of PGPHs were investigated using different chemical assays and H2O2 damaged PC12 cells, respectively. The results showed that PGPHs exhibited superior antioxidant activity. Especially, hydrolysate generated by alcalase displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (91.62%), 2,2-azino-bis (3-ethylbenzothia zoline-6-sulfonic acid) (ABTS) radical scavenging activity (90.53%), ferric reducing antioxidant power, and metal ion-chelating activity (82.16%). Analysis of amino acid composition revealed that this hydrolysate was rich in hydrophobic, negatively charged, and aromatic amino acids, contributing to its superior antioxidant properties. Additionally, alcalase hydrolysate showed cytoprotective effects on H2O2-induced oxidative stress in PC12 cells via diminishing intracellular reactive oxygen species (ROS) accumulation by stimulating antioxidant enzyme activities. Taken together, alcalase hydrolysate of P. geesteranus protein can be used as beneficial ingredients with antioxidant properties and protective effects against ROS-mediated oxidative stress.


2018 ◽  
Vol 21 (8) ◽  
pp. 571-582 ◽  
Author(s):  
Juxiang Liu ◽  
Lianli Zhang ◽  
Dan Liu ◽  
Baocai Li ◽  
Mi Zhang

Aim & Objectives: Curcuminoids are characteristic constituents in Curcuma, displaying obviously neuroprotective activities against oxidative stress. As one of the Traditional Chinese Medicines from Curcuma, the radix of Curcuma aromatica is also rich in those chemicals, but its neuroprotective activity and mechanism remain unknown. The aim of the current study is to evaluate the neuroprotective effects of extracts from the radix of C. aromatica (ECAs) on H2O2-damaged PC12 cells. Material and Methods: The model of oxidative stress damage was established by treatment of 400 µM H2O2 on PC12 to induce cell damage. After the treatment of ECWs for 24 h, the cell viability, LDH, SOD, CAT and GSH were measured to evaluate the neuroprotection of ECAs on that model. The potential action mechanism was studied by measurement of level of ROS, cell apoptosis rate, mitochondrial membrane potential (MMP), morphologic change, the intracellular Ca2+ content (F340/F380) and the expressions of Bcl-2, Bax and Caspase-3. Additionally, the constituents from tested extracts were analyzed by HPLC-DAD-Q-TOF-MS method. Results: Compared with a positive control, Vitamin E, 10 µg/ml of 95% EtOH extract (HCECA) and 75% EtOH extract (MCECA) can markedly increase the rate of cell survival and enhance the antioxidant enzyme activities of SOD, CAT, increase the levels of GSH, decrease LDH release and the level of ROS, attenuate the intracellular Ca2+ overloading, reduce the cell apoptotic rate and stabilize MMP, down-regulate Bcl-2 expression, up-regulate Bax and caspase-3 expression, and improve the change of cell morphology. The chemical analysis showed that diarylheptanoids and sesquiterpenoids are the major chemicals in tested extracts and the former were richer in HCECA and MCECA than others. Conclusions: These findings indicated that the effects of HCECA and MCECA on inhibiting the cells damage induced by H2O2 in PC12 are better than other extracts from the radix of C. aromatica, and the active constituents with neuroprotective effects consisting in those two active extracts are diarylheptanoids.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


2021 ◽  
Vol 22 (13) ◽  
pp. 6946
Author(s):  
Weishun Tian ◽  
Suyoung Heo ◽  
Dae-Woon Kim ◽  
In-Shik Kim ◽  
Dongchoon Ahn ◽  
...  

Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.


2021 ◽  
Vol 20 (1) ◽  
pp. 76-83
Author(s):  
Chi-Sen Chang ◽  
Yuh-Chiang Shen ◽  
Chi-Wen Juan ◽  
Chia-Lin Chang ◽  
Po-Kai Lin

The neuroprotective mechanisms of Crataegus pinnatifida extracts and crataegolic acid were studied using paraquat induced cytotoxicity in PC12 cells. C. pinnatifida extracts were prepared using hexane, ethyl acetate, and 95% ethanol. Additionally, crataegolic acid (also known as maslinic acid) was found in C. pinnatifida extracts. Assessment methods included the examinations of cytotoxicity, intracellular reactive oxygen species and calcium changes, activity of caspase-3 and α-synuclein, apoptotic cell death, and the expression levels of the B-cell lymphoma 2 (Bcl-2) and BCL2-associated X (Bax) proteins to investigate the neuroprotective mechanisms of C. pinnatifida extracts and its active component, crataegolic acid. The three extracts and crataegolic acid exhibited potent neuroprotective actions against paraquat induced PC12 cell apoptosis at 5–20µg/mL and 80–100µM concentrations, respectively. The key protective mechanisms included decreasing cell apoptosis, upregulating Bcl-2 protein levels, and downregulating Bax protein levels. The 95% ethanol extract also decreased paraquat induced reactive oxygen species production, calcium overloading, and caspase-3 and α-synuclein activities. The beneficial effects of these extracts could be explained by the active component, crataegolic acid that also inhibited paraquat-induced apoptosis through the suppression of reactive oxygen species generation and the caspase-3 signaling pathway.


Author(s):  
Daisy Liu

Snow fungus, Tremella fuciformis, has been demonstrated to have numerous health benefits including purported chemopreventive properties due to free radical-scavenging ability. Protective effects derived from snow fungus polysaccharides are evaluated on Chinese hamster lung fibroblasts (CCL-39) exposed to carcinogen benzo[a]pyrene known to cause free radical formation and oxidative stress to cells. In this experiment, it was hypothesized that the naturally occurring polysaccharides in snow fungus are able to protect against or reduce oxidative stress-induced DNA damage. Polysaccharides were isolated through an alkaline extraction and in-vitro digestion. DNA damage was measured using the single-cell gel electrophoresis comet assay after exposure to benzo[a]pyrene and polysaccharide extract to lung fibroblasts. Results were calculated using the mean and standard deviation data of tail length and area, respectively. Each damaged cell was measured and analyzed through ImageJ Editing Software. The results indicate a promising trend which depict snow fungus polysaccharides yielding lower levels of DNA damage compared to cells exposed to benzo[a]pyrene and compared to the negative control (phosphate buffered saline and Dulbecco’s cell medium). This study suggests polysaccharides from Tremella fuciformis could truly prevent cellular DNA damage by protecting against oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document