scholarly journals Neuroprotective Effects of Coreopsis lanceolata Flower Extract against Oxidative Stress-Induced Apoptosis in Neuronal Cells and Mice

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 951
Author(s):  
Hyung Don Kim ◽  
Ji Yeon Lee ◽  
Jeong-Yong Park ◽  
Dong Hwi Kim ◽  
Min Hye Kang ◽  
...  

(1) Background: Coreopsis lanceolata L. is a perennial plant of the family Asteraceae, and its flower is known to contain flavonoids with various bioactivities. We evaluated the effect of Coreopsis lanceolata L. flower (CLF) extracts on H2O2-induced oxidative stress (OS) in neuronal cells and mouse neurons. (2) Methods: The flowering part of CL was used as CLF1 (70% ethanol extract) and CLF2 (water extract), and 10 types of phenolic compounds were quantified using high-performance liquid chromatography. To evaluate the neuroprotective effects of CLF, the antioxidant activities of the extracts were measured, and the expression levels of antioxidant enzymes and proteins related to OS-induced apoptosis in neuronal cells and mouse neurons treated with the extracts were investigated. (3) Results: In the in vitro study, CLF ameliorated H2O2-induced oxidative stress and induced the expression of antioxidant enzymes in PC12 cells. Furthermore, CLF1 enhanced the expression of the Bcl-xL protein but reduced the expression of Bax and the cleavage of caspase-3. In the same manner, CLF1 showed neuroprotective effects against OS in vivo. Pretreatment with CLF1 (200 mg/kg) increased the Bcl-2 protein and decreased Bax compared with the 1-methyl-4-phenylpyridinium ion (MPP+)-treated C57BL/6 mice model group. Our results suggest that the protective effects of CLF1 on MPP+-induced apoptosis may be due to its anti-apoptotic activity, through regulating the expression of the Bcl-2 family. (4) Conclusions: CLF1 exerts neuroprotective effects against OS-induced apoptosis in PC12 cells in a Parkinson’s disease model mouse. This effect may be attributable to the upregulation of Bcl-2 protein expression, downregulation of Bax expression, and inhibition of caspase-3 activation. These data indicate that CLF may provide therapeutic value for the treatment of progressive neurodegenerative diseases.

Marine Drugs ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 372 ◽  
Author(s):  
Seung Yeon Baek ◽  
Mee Ree Kim

In this study, we found that E. prolifera extract (EAEP) exhibits neuroprotective effects in oxidative stress-induced neuronal cells. EAEP improved cell viability as well as attenuated the formation of intracellular reactive oxygen species (ROS) and apoptotic bodies in glutamate-treated hippocampal neuronal cells (HT-22). Furthermore, EAEP improved the expression of brain-derived neurotrophic factor (BDNF) and antioxidant enzymes such as heme oxygenase-1 (HO-1), NAD(P)H quinine oxidoreductase-1 (NQO-1), and glutamate–cysteine ligase catalytic subunit (GCLC) via the tropomyosin-related kinase receptor B/ protein kinase B (TrkB/Akt) signaling pathway. In contrast, the pre-incubation of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, ameliorated the neuroprotective effects of EAEP in oxidative stress-induced neuronal cells. These results suggest that EAEP protects neuronal cells against oxidative stress-induced apoptosis by upregulating the expression of BDNF and antioxidant enzymes via the activation of the TrkB/Akt pathway. In conclusion, such an effect of EAEP, which is rich in carotenoid-derived compounds, may justify its application as a food supplement in the prevention and treatment of neurodegenerative disorders.


2018 ◽  
Vol 21 (8) ◽  
pp. 571-582 ◽  
Author(s):  
Juxiang Liu ◽  
Lianli Zhang ◽  
Dan Liu ◽  
Baocai Li ◽  
Mi Zhang

Aim & Objectives: Curcuminoids are characteristic constituents in Curcuma, displaying obviously neuroprotective activities against oxidative stress. As one of the Traditional Chinese Medicines from Curcuma, the radix of Curcuma aromatica is also rich in those chemicals, but its neuroprotective activity and mechanism remain unknown. The aim of the current study is to evaluate the neuroprotective effects of extracts from the radix of C. aromatica (ECAs) on H2O2-damaged PC12 cells. Material and Methods: The model of oxidative stress damage was established by treatment of 400 µM H2O2 on PC12 to induce cell damage. After the treatment of ECWs for 24 h, the cell viability, LDH, SOD, CAT and GSH were measured to evaluate the neuroprotection of ECAs on that model. The potential action mechanism was studied by measurement of level of ROS, cell apoptosis rate, mitochondrial membrane potential (MMP), morphologic change, the intracellular Ca2+ content (F340/F380) and the expressions of Bcl-2, Bax and Caspase-3. Additionally, the constituents from tested extracts were analyzed by HPLC-DAD-Q-TOF-MS method. Results: Compared with a positive control, Vitamin E, 10 µg/ml of 95% EtOH extract (HCECA) and 75% EtOH extract (MCECA) can markedly increase the rate of cell survival and enhance the antioxidant enzyme activities of SOD, CAT, increase the levels of GSH, decrease LDH release and the level of ROS, attenuate the intracellular Ca2+ overloading, reduce the cell apoptotic rate and stabilize MMP, down-regulate Bcl-2 expression, up-regulate Bax and caspase-3 expression, and improve the change of cell morphology. The chemical analysis showed that diarylheptanoids and sesquiterpenoids are the major chemicals in tested extracts and the former were richer in HCECA and MCECA than others. Conclusions: These findings indicated that the effects of HCECA and MCECA on inhibiting the cells damage induced by H2O2 in PC12 are better than other extracts from the radix of C. aromatica, and the active constituents with neuroprotective effects consisting in those two active extracts are diarylheptanoids.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Dongdong Zhang ◽  
Zhe Wang ◽  
Chenxia Sheng ◽  
Weijun Peng ◽  
Shan Hui ◽  
...  

Icariin is a prenylated flavonol glycoside derived from the Chinese herbEpimedium sagittatumthat exerts a variety of pharmacological activities and shows promise in the treatment and prevention of Alzheimer’s disease. In this study, we investigated the neuroprotective effects of icariin against amyloid beta protein fragment 25–35 (Aβ25–35) induced neurotoxicity in cultured rat pheochromocytoma PC12 cells and explored potential underlying mechanisms. Our results showed that icariin dose-dependently increased cell viability and decreasedAβ25–35-induced apoptosis, as assessed by MTT assay and Annexin V/propidium iodide staining, respectively. Results of western blot analysis revealed that the selective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 suppressed icariin-induced Akt phosphorylation, suggesting that the protective effects of icariin are associated with activation of the PI3K/Akt signaling pathway. LY294002 also blocked the icariin-induced downregulation of proapoptotic factors Bax and caspase-3 and upregulation of antiapoptotic factor Bcl-2 inAβ25–35-treated PC12 cells. These findings provide further evidence for the clinical efficacy of icariin in the treatment of Alzheimer’s disease.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Bo Dam Lee ◽  
Jae-Myung Yoo ◽  
Seong Yeon Baek ◽  
Fu Yi Li ◽  
Dai-Eun Sok ◽  
...  

3,3′-Diindolylmethane (DIM), a metabolite of indole-3-carbinol present in Brassicaceae vegetables, possesses various health-promoting effects. Nonetheless, the effect of DIM on neurodegenerative diseases has not been elucidated clearly. In this study, we hypothesized DIM may protect neuronal cells against oxidative stress-induced apoptosis by promoting the formation of brain-derived neurotrophic factor (BDNF) and antioxidant enzymes through stabilizing the activation of the tropomyosin-related kinase receptor B (TrkB) cascade and we investigated the effect of DIM on oxidative stress-mediated neurodegenerative models. DIM protected neuronal cells against oxidative stress-induced apoptosis by regulating the expression of apoptosis-related proteins in glutamate-treated HT-22 cells. Additionally, DIM improved the expression of BDNF and antioxidant enzymes, such as heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinine oxidoreductase-1, by promoting the activation of the TrkB/protein kinase B (Akt) pathway in the cells. Consistent with in vitro studies, DIM attenuated memory impairment by protecting hippocampal neuronal cells against oxidative damage in scopolamine-treated mice. Conclusionally, DIM exerted neuroprotective and antioxidant actions through the activation of both BDNF production and antioxidant enzyme formation in accordance with the TrkB/Akt pathway in neuronal cells. Such an effect of DIM may provide information for the application of DIM in the prevention of and therapy for neurodegenerative diseases.


2010 ◽  
Vol 26 (5) ◽  
pp. 297-308 ◽  
Author(s):  
RM Satpute ◽  
J. Hariharakrishnan ◽  
R. Bhattacharya

Cyanide is a mitochondrial poison, which is ubiquitously present in the environment. Cyanide-induced oxidative stress is known to play a key role in mediating the neurotoxicity and cell death in rat pheochromocytoma (PC12) cells. PC12 cells are widely used as a model for neurotoxicity assays in vitro. In the present study, we investigated the protective effects of alpha-ketoglutarate (A-KG), a potential cyanide antidote, and N-acetyl cysteine (NAC), an antioxidant against toxicity of cyanide in PC12 cells. Cells were treated with various concentrations (0.625—1.25 mM) of potassium cyanide (KCN) for 4 hours, in the presence or absence of simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM). Cyanide caused marked decrease in the levels of cellular antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Lipid peroxidation indicated by elevated levels of malondialdehyde (MDA) was found to be accompanied by decreased levels of reduced glutathione (GSH) and total antioxidant status (TAS) of the cells. Cyanide-treated cells showed notable increase in caspase-3 activity and induction of apoptotic type of cell death after 24 hours. A-KG and NAC alone were very effective in restoring the levels of GSH and TAS, but together they significantly resolved the effects of cyanide on antioxidant enzymes, MDA levels, and caspase-3 activity. The present study reveals that combination of A-KG and NAC has critical role in abbrogating the oxidative stress-mediated toxicity of cyanide in PC12 cells. The results suggest potential role of A-KG and NAC in cyanide antagonism.


2020 ◽  
Vol 98 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Hongbo Luo ◽  
Wei Sun ◽  
Jin Shao ◽  
Huiping Ma ◽  
Zhengping Jia ◽  
...  

Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. HPN (4′-hydroxyl-2-substituted phenyl nitronyl nitroxide), a stable nitronyl nitroxide, has excellent free radical scavenging properties. The purpose of this study was to investigate the protective effects of HPN on hypoxia-induced damage in PC12 cells. It was shown that HPN significantly attenuated hypoxia-induced loss of cell viability, release of lactate dehydrogenase (LDH), and morphological changes in PC12 cells. Moreover, hypoxic PC12 cells had increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), and expression of HIF-1α and VEGF, but had reduced levels of superoxide dismutase (SOD) and catalase (CAT), and HPN reversed these changes. HPN also inhibited hypoxia-induced cell apoptosis via suppressing the expression of Bax, cytochrome c, and caspase-3, and inducing the expression of Bcl-2. These results indicate that the protective effects of HPN on hypoxia-induced damage in PC12 cells is associated with the suppression of hypoxia-induced oxidative stress and cell apoptosis. HPN could be a promising candidate for the development of a novel neuroprotective agent.


2020 ◽  
Vol 13 ◽  
Author(s):  
Reyhaneh Taheri ◽  
Elham Hadipour ◽  
Zahra Tayarani-Najaran

Background: Crocin is a known compound with antioxidant and anti-inflammatory property which many help to reduce the progression of neurological disorders. In this study, we aimed to investigate the protective effects of crocin on beta-amyloid peptide Aβ (1-40) and hydrogen peroxide (H2O2) induced neurotoxicity in PC12 cells. Methods: PC12 cells pretreated with crocin and donepezil (5 and 10 µM) for 2 h then treated with Aβ (1-40) (25 µM) for 24 h. In parallel after pretreatment with crocin (5 and 10 µM) and donepezil (5 and 10 µM) for 24 h, cells were treated with H2O2 (800 µM) for 4 h. Finally, the cell viability and intracellular reactive oxygen species (ROS) generation were evaluated using AlamarBlue® and 2', 7'-dichlorodihydrofluorescein diacetate (DCFH-DA), respectively. The western blot test was done to compare the protein level of phospho SAPK/JNK, SAPK/JNK, PI3 Kinase P85, Phospho-PI3 Kinase P85, caspase-3 and cytochrome c )cyt c). Results: Crocin and donepezil could significantly decrease the Aβ toxicity and ROS level. While treatment with Aβ increased Cyt c release from mitochondria to cytosol, cleaved form of caspase-3 (17 kDa) and activated form of SAPK/JNK p44/4 and decreased the activated form of PI3 Kinase P85 protein, crocin could significantly block the apoptosis initiated with Aβ. Conclusions: According to the results crocin could be a promising candidate for further evaluations against the development of Alzheimer's diseases through mitogen-activated protein kinases (MAPK) and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling (PI3 K/AKT) pathways.


2011 ◽  
Vol 14 (1-2) ◽  
pp. 120-127 ◽  
Author(s):  
Mi-Young Yoon ◽  
Ji-Hwan Hwang ◽  
Jae-Hee Park ◽  
Mi-Ra Lee ◽  
Hyun-Jung Kim ◽  
...  

2017 ◽  
Vol 30 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Rupesh D Divate ◽  
Pei-Ming Wang ◽  
Chiun-Chuang Wang ◽  
Su-Tze Chou ◽  
Chen-Tien Chang ◽  
...  

Xylaria nigripes ( XN) is a medicinal fungus that was used traditionally as a diuretic, nerve tonic, and for treating insomnia and trauma. In this study, we elucidated possible mechanisms of neuroprotective effects of XN mycelia extracts. XN mycelia were produced by fermentation. Hot water extract and 70% ethanol extract of XN mycelia were evaluated on hydrogen peroxide (H2O2)-induced apoptosis in PC12, a rat pheochromocytoma cell line. Both XN extracts effectively protected PC12 cells against H2O2-induced cell damage by inhibiting release of lactate dehydrogenase, decreasing DNA damage, restoring mitochondrial membrane potential, and arresting abnormal apoptosis through upregulation of Bcl-2 and downregulation of Bax and caspase 3. Compared to water extract, ethanol extract showed not only greater neuroprotective effects but also a higher antioxidant activity by scavenging DPPH radicals, inhibiting lipid peroxidation, and reducing power. High phenolic content and antioxidant activity may provide the neuroprotective properties of XN ethanol extract.


Sign in / Sign up

Export Citation Format

Share Document