Fungal endophytes of Festuca rubra increase in frequency following long-term exclusion of rabbits

Botany ◽  
2015 ◽  
Vol 93 (4) ◽  
pp. 233-241 ◽  
Author(s):  
James S. Santangelo ◽  
Nash E. Turley ◽  
Marc T.J. Johnson

Plant – fungal endophyte interactions are common in nature and they can shape the ecology of plants. Vertically transmitted endophytes are hypothesized to serve as mutualists, protecting plants from herbivores. If this hypothesis is true, then we expect endophytes to be most abundant in the presence of herbivores and least abundant in their absence, assuming endophytes incur a cost to their host. We tested this prediction by studying the effects of intense rabbit (Oryctolagus cuniculus Linnaeus) grazing on grass–endophyte interactions at Silwood Park, UK. We examined seeds of red fescue (Festuca rubra L.) collected from 15 natural populations that were protected from rabbits for 0.3–21 years. Contrary to our prediction, the mean proportion of seeds with endophytes increased 1.84×, from 0.45 to 0.83, following 21 years of rabbit exclusion. To better understand the mechanisms driving this increase in frequency, we conducted a fully factorial greenhouse experiment where we manipulated the presence or absence of endophyte infection, intraspecific competition, and simulated grazing on F. rubra plants. In both damaged and undamaged treatments, infected plants produced approximately twice as much biomass as uninfected plants, and endophytes did not influence tolerance to herbivory. These results suggest that endophytes directly change plant growth but not compensatory responses to damage. In the absence of competitors, infected plants produced 2.17× more biomass than uninfected plants, whereas in the presence of competitors, infected plants produced only 1.55× more biomass than uninfected plants. This difference suggests that intraspecific competition might lessen the benefits of endophyte infection. Our results do not support the defensive mutualism hypothesis, but instead suggest that endophyte-induced plant growth is important in shaping the costs and benefits of endophytes in our system.

Author(s):  
Louise M. Hennessy ◽  
Alison J. Popay ◽  
Travis R. Glare ◽  
Sarah C. Finch ◽  
Vanessa M. Cave ◽  
...  

AbstractArgentine stem weevil adults (ASW, Listronotus bonariensis) feed on the leaves of agricultural grasses and their larvae mine the pseudostem, causing extensive damage that can result in plant death. Plants emit volatiles that serve as signals to host-searching insects and these odours can be altered by both herbivory and fungal endophyte-infection. This study investigated whether ASW adults utilise olfaction to identify their host plants, perennial ryegrass (Lolium perenne), and if conspecific herbivory or the presence of Epichloë festucae var. lolii fungal endophytes (strain wild-type or AR1) influenced such responses. Results from olfactometer bioassays established that ASW adults were able to utilise their olfactory response to orient towards volatiles released by perennial ryegrass and further, the weevils displayed a preference for plants previously damaged by conspecific weevils. However, there was no evidence that weevils had the ability to distinguish between endophyte-infected and endophyte-free plants using olfaction alone. Using a push–pull extraction technique, thirteen volatile compounds were identified in the blend released by perennial ryegrass. Endophyte and herbivory were found to alter these volatile compounds and quantities emitted by this forage grass. This study suggests that despite observing differences in the plant volatile blend, ASW do not perceive endophyte (wild-type and AR1) using olfaction alone and must rely on other cues, e.g. contact chemoreception or post-ingestional malaise, to detect the presence of a bioactive endophyte in an otherwise acceptable host plant.


2015 ◽  
Vol 140 (3) ◽  
pp. 257-264 ◽  
Author(s):  
Zipeng Tian ◽  
Bingru Huang ◽  
Faith C. Belanger

Strong creeping red fescue (Festuca rubra ssp. rubra) is an important cool season turfgrass species. Cultivars are often infected with the fungal endophyte Epichloë festucae. Endophyte infection is known to confer insect and disease resistance to the plants. The effect of endophyte infection on drought or heat stress tolerance of strong creeping red fescue is not yet established. The objectives of this controlled-environment study were to determine if endophyte infection had any effect on physiological parameters associated with plant tolerance to drought or heat stress or the combination of the two stresses. In this study, endophyte status had no effect on turf quality (TQ), relative water content (RWC), photochemical efficiency, chlorophyll content, electrolyte leakage (EL), or malondialdehyde (MDA) content of the plants under any of the stress treatments. Our results suggested that E. festucae infection had no physiological effects on improving drought, heat or the combined stress tolerance in strong creeping red fescue.


2011 ◽  
Vol 62 (11) ◽  
pp. 1010 ◽  
Author(s):  
P. E. Gundel ◽  
I. Zabalgogeazcoa ◽  
B. R. Vázquez de Aldana

In diverse natural habitats of Europe, plants of Festuca rubra are commonly infected by the fungal endophyte Epichloë festucae. Under several circumstances, the association between the grass and the fungus has been shown to be mutualistic. Here, we conducted an experiment to study the differences in seed germination and mortality between infected (E+) and endophyte-free plants (E–) at different temperatures (12 and 25°C) and water potentials (0 and –0.5 MPa). Three half-sib lines of F. rubra, each composed of E+ and E– seeds, and derived from infected plants from semiarid grasslands were used. Although the endophyte effect depended on the incubation condition, germination percentage was significantly greater for E– (52%) than for E+ seeds (41%). Seed germination was more inhibited by the low water potential (75 v. 24% for –0.5 and 0.0 MPa, respectively), than by the high temperature (64 v. 35% for 25 and 12°C, respectively). However, mortality was highly dependent on the interaction between plant genotype and endophyte, and between temperature and water condition. It is remarkable that while highly dependent on the host genotype, there was a clear effect of endophyte increasing seed survival, especially in those treatments that were unfavourable for germination. For example, in the more restrictive treatment (25°C and –0.5 MPa), seed survival was on average, 44 and 39% for E+ and E–, respectively. In general, the endophyte affected seed characteristics of F. rubra by reducing the percentage of germination, but simultaneously increasing seed survival.


2019 ◽  
Vol 7 (11) ◽  
pp. 567
Author(s):  
Wang ◽  
Clarke ◽  
Belanger

Many cool-season grasses have symbiotic relationships with Epichloë (Ascomycota, Clavicipitaceae) fungal endophytes that inhabit the intercellular spaces of the above-ground parts of the host plants. The presence of the Epichloë endophytes is generally beneficial to the hosts due to enhanced tolerance to biotic and abiotic stresses conferred by the endophytes. Many Epichloë spp. are asexual, and those infections always remain asymptomatic. However, some Epichloë spp. have a sexual stage and produce a macroscopic fruiting body, a stroma, that envelops the developing inflorescence causing a syndrome termed “choke disease”. Here, we report a fungal and plant gene expression analysis of choke stroma tissue and asymptomatic inflorescence tissue of Epichloë festucae-infected strong creeping red fescue (Festuca rubra subsp. rubra). Hundreds of fungal genes and over 10% of the plant genes were differentially expressed when comparing the two tissue types. The differentially expressed fungal genes in the choke stroma tissue indicated a change in carbohydrate and lipid metabolism, as well as a change in expression of numerous genes for candidate effector proteins. Plant stress-related genes were up-regulated in the stroma tissue, suggesting the plant host was responding to the epiphytic stage of E. festucae as a pathogen.


2014 ◽  
Vol 10 (7) ◽  
pp. 20140460 ◽  
Author(s):  
Andrew J. Tanentzap ◽  
Mark Vicari ◽  
Dawn R. Bazely

Fungal endophytes modify plant–herbivore interactions by producing toxic alkaloids that deter herbivory. However, studies have neglected the direct effects herbivores may have on endophytes. Antifungal properties and signalling effectors in herbivore saliva suggest that evolutionary pressures may select for animals that mitigate the effects of endophyte-produced alkaloids. Here, we tested whether saliva of moose ( Alces alces ) and European reindeer ( Rangifer tarandus ) reduced hyphal elongation and production of ergot alkaloids by the foliar endophyte Epichloë festucae associated with the globally distributed red fescue Festuca rubra . Both moose and reindeer saliva reduced the growth of isolated endophyte hyphae when compared with a treatment of distilled water. Induction of the highly toxic alkaloid ergovaline was also inhibited in plants from the core of F. rubra 's distribution when treated with moose saliva following simulated grazing. In genotypes from the southern limit of the species' distribution, ergovaline was constitutively expressed, as predicted where growth is environmentally limited. Our results now present the first evidence, to our knowledge, that ungulate saliva can combat plant defences produced by a grass–endophyte mutualism.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 617 ◽  
Author(s):  
Bitarafan ◽  
Rasmussen ◽  
Westergaard ◽  
Andreasen

Red fescue (Festuca rubra) is used in seed mixtures for lawns and pastures. It is prone to lodge at flowering, and plant growth regulators (PGRs) are used to prevent lodging, ensuring sufficient pollination. Seed yield and lodging were studied over three years in a red fescue field established with four seeding rates (2, 4, 6 and 8 kg ha−1) and sprayed each year with three doses of the PGR trinexapac-ethyl (250 g L−1) (0, 0.3, 0.6 and 1.2 L ha−1). Half of each plot was sprayed with the PGR and the other half was left unsprayed as control. The degree of lodging was assessed by analysing drone images in the second year of the experiment and using a 10-point scale for scoring lodging at the ground. Generally, application of PGR increased the seed yield but the effect varied between years. There was no interaction between the PGR dosage and seeding rate. We found a positive correlation between the blue intensity of the images and lodging. PGR dosage significantly affected lodging evaluated by visual ranking and the blue intensity of the images, while the seeding rates did not affect lodging. Lodging affected seed yield negatively.


2005 ◽  
Vol 83 (4) ◽  
pp. 356-361 ◽  
Author(s):  
Joseph K Bailey ◽  
Ron Deckert ◽  
Jennifer A Schweitzer ◽  
Brian J Rehill ◽  
Richard L Lindroth ◽  
...  

Recent studies have shown effects of host plant genetics on community and ecosystem processes, which makes understanding the impacts of genetically based traits on hidden or non-apparent organisms more important. Here we examined links among genetic variation in hybrid cottonwoods, plant phytochemistry, and twig fungal endophytes (i.e., a common hidden organism). We found three major patterns: (1) twig fungal endophyte infection was positively related to the introgression of Fremont cottonwood (Populus fremontii S. Wats.) RFLP genetic markers, (2) condensed tannin concentration in twig bark tissue was negatively correlated to the introgression of Fremont genetic markers, and (3) fungal endophyte infection was negatively related to condensed tannin concentration in twig bark. These data demonstrate that plant genotype can impact hidden ecological players (i.e., fungal endophytes) resulting in community and ecosystem consequences.Key words: ecological genetics, fungal endophytes, hidden players, hybridization, Populus, tannins.


2020 ◽  
Vol 40 (8) ◽  
pp. 1080-1094 ◽  
Author(s):  
Fan-Lin Wu ◽  
Yan Li ◽  
Wei Tian ◽  
Yadong Sun ◽  
Feiyan Chen ◽  
...  

Abstract Dark septate endophytes (DSEs) are one of the most studied groups of root fungal endophytes in recent years. However, the effects of DSE on host plant are still under debate, and the molecular mechanisms are poorly understood. In this study, we identified a DSE fungus of the genus Anteaglonium, named T010, from the wild blueberry. When inoculated into Vaccinium corymbosum L. plants, T010 could enhance root growth and promote shoot branching, leading to increased plant growth. By comparative transcriptome analysis, we obtained 1948 regulated differentially expressed genes (DEGs) from the V. corymbosum plants treated by T010. Further functional enrichment analysis identified a series of DEGs enriched in transcriptional regulation, material transport, phytohormone biosynthesis and flavonoid biosynthesis. Moreover, the comparative analysis of liquid chromatography–mass spectrometry verified that T010 treatment induced the changes in the contents of various phytohormones and flavonoids. This is the first report on the isolation of DSE fungi of the genus Anteaglonium from blueberry roots. Moreover, our results suggested that T010 colonization could result in a series of changes in cell metabolism, biosynthesis and signal pathways, thereby promoting plant growth. Particularly, the changes of phytohormone and flavonoid metabolism induced by T010 colonization might contribute to the promotion of blueberry growth. Our results will provide new insights into understanding of the interaction of DSE fungi and host plants, as well as the development and utilization of DSE preparations.


2019 ◽  
Vol 7 (2) ◽  
pp. 37 ◽  
Author(s):  
Bernd Wemheuer ◽  
Torsten Thomas ◽  
Franziska Wemheuer

Despite the importance of endophytic fungi for plant health, it remains unclear how these fungi are influenced by grassland management practices. Here, we investigated the effect of fertilizer application and mowing frequency on fungal endophyte communities and their life strategies in aerial tissues of three agriculturally important grass species (Dactylis glomerata L., Festuca rubra L. and Lolium perenne L.) over two consecutive years. Our results showed that the management practices influenced fungal communities in the plant holobiont, but observed effects differed between grass species and sampling year. Phylogenetic diversity of fungal endophytes in D. glomerata was significantly affected by mowing frequency in 2010, whereas fertilizer application and the interaction of fertilization with mowing frequency had a significant impact on community composition of L. perenne in 2010 and 2011, respectively. Taken together, our research provides a basis for future studies on responses of fungal endophytes towards management practices. To the best of our knowledge, this is the first study simultaneously assessing fungal endophyte communities in aerial parts of three agriculturally important grass species over two consecutive years.


2021 ◽  
Vol 9 (1) ◽  
pp. 140
Author(s):  
Ruying Wang ◽  
Simin Luo ◽  
Bruce B. Clarke ◽  
Faith C. Belanger

Strong creeping red fescue (Festuca rubra subsp. rubra) is a commercially important low-maintenance turfgrass and is often naturally infected with the fungal endophyte Epichloë festucae. Epichloë spp. are endophytes of several cool-season grass species, often conferring insect resistance to the grass hosts due to the production of toxic alkaloids. In addition to insect resistance, a unique feature of the strong creeping red fescue/E. festucae symbiosis is the endophyte-mediated disease resistance to the fungal pathogen Clarireedia jacksonii, the causal agent of dollar spot disease. Such disease resistance is not a general feature of other grass/ Epichloë interactions. E. festucae isolates infecting red fescue have an antifungal protein gene Efe-afpA, whereas most other Epichloë spp. do not have a similar gene. The uniqueness of this gene suggests it may, therefore, be a component of the unique disease resistance seen in endophyte-infected red fescue. Here, we report the generation of CRISPR-Cas9 Efe-afpA gene knockouts with the goal of determining if absence of the protein in endophyte-infected Festuca rubra leads to disease susceptibility. However, it was not possible to infect plants with the knockout isolates, although infection was possible with the wild type E. festucae and with complemented isolates. This raises the interesting possibility that, in addition to having antifungal activity, the protein is required for the symbiotic interaction. The antifungal protein is a small secreted protein with high expression in planta relative to its expression in culture, all characteristics consistent with effector proteins. If Efe-AfpA is an effector protein it must be specific to certain interactions, since most Epichloë spp. do not have such a gene in their genomes.


Sign in / Sign up

Export Citation Format

Share Document