scholarly journals Movement types of an Arctic benthic fish, shorthorn sculpin (Myoxocephalus scorpius), during open-water periods in response to biotic and abiotic factors

2019 ◽  
Vol 76 (4) ◽  
pp. 626-635 ◽  
Author(s):  
Justin J. Landry ◽  
Steve T. Kessel ◽  
Montana F. McLean ◽  
Silviya V. Ivanova ◽  
Nigel E. Hussey ◽  
...  

Shorthorn sculpin (Myoxocephalus scorpius) are among the most numerous consumers in the Arctic nearshore marine habitats. Despite this, little is known about their movement ecology or predator–prey interactions, particularly with Arctic cod (Boreogadus saida), an important forage fish in the Arctic. Using acoustic telemetry, the movements of tagged sculpin and cod were quantified based on specific locations using a Vemco positioning system during open water when both species were present in the near shore. Movement trajectories of sculpin distinguish three unique types: foraging and feeding behaviour and large transiting movements. The relative time of each of these movement types were correlated to biotic (presence of large numbers of acoustically tagged Arctic cod) and abiotic factors (percent ice coverage and temperature). This study provides unique data on the movement, feeding ecology, and behaviour of an abundant Arctic benthic fish that demonstrates similar movement types to temperate fish. However, further study is needed to quantify specifically the trophic interactions of these important fish and impact on food webs in the rapidly changing Arctic.

2018 ◽  
Vol 75 (12) ◽  
pp. 2390-2400 ◽  
Author(s):  
Silviya V. Ivanova ◽  
Steven T. Kessel ◽  
Justin Landry ◽  
Caitlin O’Neill ◽  
Montana F. McLean ◽  
...  

Sea ice reduction in the Arctic is allowing for increased vessel traffic and activity. Vessel noise is a known anthropogenic disturbance, but its effects on Arctic fish are largely unknown. Using acoustic telemetry — Vemco positioning system — we quantified the home ranges and fine-scale movement types (MT) of shorthorn sculpin (Myoxocephalus scorpius), a common benthic Arctic fish, in response to vessels and environmental drivers during open water over 3 years (2012–2014). Low overlap of core home ranges (50%) for all years and a change of overall MT proportions (significant in 2012 only) were observed when vessels were present compared with absent. However, changes in MTs associated with vessel presence were not consistent between years. Photoperiod was the only environmental driver that influenced (R2 = 0.32) MTs of sculpin. This is the first study of vessel impacts on Arctic fish using acoustic telemetry and demonstrates that individuals alter their behavior and home ranges when vessels are present. Given increasing vessel traffic in the Arctic, additional study on the impact of vessels on these ecosystems is warranted.


Polar Biology ◽  
2018 ◽  
Vol 41 (10) ◽  
pp. 2091-2102 ◽  
Author(s):  
Justin J. Landry ◽  
Aaron T. Fisk ◽  
David J. Yurkowski ◽  
Nigel E. Hussey ◽  
Terry Dick ◽  
...  

ARCTIC ◽  
1982 ◽  
Vol 35 (2) ◽  
Author(s):  
Garth L. Fletcher ◽  
Richard F. Addison ◽  
Don Slaughter ◽  
Choy L. Hew

2013 ◽  
Vol 91 (8) ◽  
pp. 573-580 ◽  
Author(s):  
A.P. Farrell ◽  
J. Altimiras ◽  
C.E. Franklin ◽  
M. Axelsson

Cardiovascular adaptations that permit successful exploitation of polar marine waters by fish requires a capacity to negate or compensate for the depressive effects of low temperatures on physiological processes. Here, we examined the effects of acute and chronic temperature change on the maximum cardiac performance of shorthorn sculpin (Myoxocephalus scorpius (L., 1758)) captured above the Arctic Circle. Our aim was to establish if the sculpin’s success at low temperatures was achieved through thermal independence of cardiac function or via thermal compensation as a result of acclimation. Maximum cardiac performance was assessed at both 1 and 6 °C with a working perfused heart preparation that was obtained after fish had been acclimated to either 1 or 6 °C. Thus, tests were performed at the fish’s acclimation temperature and with an acute temperature change. Maximum cardiac output, which was relatively large (>50 mL·min−1·kg−1 body mass) for a benthic fish at a frigid temperature, was found to be independent of both acclimation temperature and test temperature. While maximum β-adrenergic stimulation produced positive chronotropy at both acclimation temperatures, inotropic effects were weak or absent. We conclude that thermal independence of cardiac performance at low temperature likely facilitated the exploitation of polar waters by the shorthorn sculpin.


Author(s):  
Olga Mashtaler ◽  
Olga Mashtaler ◽  
Alexander Myasoedov ◽  
Alexander Myasoedov ◽  
Elizaveta Zabolotskikh ◽  
...  

The relevance of the polar lows (PLs) research is justified by their great destructive power and creation of threat to the safety of navigation in the high latitudes and along the Northern Sea Route. The most dangerous effects on maritime activities are strong winds, waves and icing. In addition, the study of the PLs acquires relevance due to the sharp decrease of the sea ice area in the Arctic in recent years and the emergence of areas of open water, suitable for the appearance and development of PLs. However, despite the importance of PLs, they are apparently not sufficiently studied. As there are no meteorological observations in the areas of their appearance, the main source of information about them are satellite observations. By using images on the SOLab SIOWS Arctic Portal from multiple satellites operating in the IR and visible ranges (e.g., MODIS and AVHRR), and using near-water wind fields from high resolution synthetic aperture radars (Sentine-1, ASAR) and low resolution scatterometers (ASCAT), we identify polar lows in various parts of the Arctic, revealing statistical regularities in the appearance of PLs, their distribution and intensity. Collected database of Pls and their characteristics will be used for further PLs forecasting model development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jang-Mu Heo ◽  
Seong-Su Kim ◽  
Sung-Ho Kang ◽  
Eun Jin Yang ◽  
Ki-Tae Park ◽  
...  

AbstractThe western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (N2O) cycles from greenhouse gases. We investigated WAO N2O dynamics through an intensive and precise N2O survey during the open-water season of summer 2017. The effects of physical processes (i.e., solubility and advection) were dominant in both the surface (0–50 m) and deep layers (200–2200 m) of the northern Chukchi Sea with an under-saturation of N2O. By contrast, both the surface layer (0–50 m) of the southern Chukchi Sea and the intermediate (50–200 m) layer of the northern Chukchi Sea were significantly influenced by biogeochemically derived N2O production (i.e., through nitrification), with N2O over-saturation. During summer 2017, the southern region acted as a source of atmospheric N2O (mean: + 2.3 ± 2.7 μmol N2O m−2 day−1), whereas the northern region acted as a sink (mean − 1.3 ± 1.5 μmol N2O m−2 day−1). If Arctic environmental changes continue to accelerate and consequently drive the productivity of the Arctic Ocean, the WAO may become a N2O “hot spot”, and therefore, a key region requiring continued observations to both understand N2O dynamics and possibly predict their future changes.


2021 ◽  
Vol 13 (12) ◽  
pp. 2283
Author(s):  
Hyangsun Han ◽  
Sungjae Lee ◽  
Hyun-Cheol Kim ◽  
Miae Kim

The Arctic sea ice concentration (SIC) in summer is a key indicator of global climate change and important information for the development of a more economically valuable Northern Sea Route. Passive microwave (PM) sensors have provided information on the SIC since the 1970s by observing the brightness temperature (TB) of sea ice and open water. However, the SIC in the Arctic estimated by operational algorithms for PM observations is very inaccurate in summer because the TB values of sea ice and open water become similar due to atmospheric effects. In this study, we developed a summer SIC retrieval model for the Pacific Arctic Ocean using Advanced Microwave Scanning Radiometer 2 (AMSR2) observations and European Reanalysis Agency-5 (ERA-5) reanalysis fields based on Random Forest (RF) regression. SIC values computed from the ice/water maps generated from the Korean Multi-purpose Satellite-5 synthetic aperture radar images from July to September in 2015–2017 were used as a reference dataset. A total of 24 features including the TB values of AMSR2 channels, the ratios of TB values (the polarization ratio and the spectral gradient ratio (GR)), total columnar water vapor (TCWV), wind speed, air temperature at 2 m and 925 hPa, and the 30-day average of the air temperatures from the ERA-5 were used as the input variables for the RF model. The RF model showed greatly superior performance in retrieving summer SIC values in the Pacific Arctic Ocean to the Bootstrap (BT) and Arctic Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice (ASI) algorithms under various atmospheric conditions. The root mean square error (RMSE) of the RF SIC values was 7.89% compared to the reference SIC values. The BT and ASI SIC values had three times greater values of RMSE (20.19% and 21.39%, respectively) than the RF SIC values. The air temperatures at 2 m and 925 hPa and their 30-day averages, which indicate the ice surface melting conditions, as well as the GR using the vertically polarized channels at 23 GHz and 18 GHz (GR(23V18V)), TCWV, and GR(36V18V), which accounts for atmospheric water content, were identified as the variables that contributed greatly to the RF model. These important variables allowed the RF model to retrieve unbiased and accurate SIC values by taking into account the changes in TB values of sea ice and open water caused by atmospheric effects.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Günther Heinemann ◽  
Sascha Willmes ◽  
Lukas Schefczyk ◽  
Alexander Makshtas ◽  
Vasilii Kustov ◽  
...  

The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.


2012 ◽  
Vol 90 (6) ◽  
pp. 714-721 ◽  
Author(s):  
J.J. Bowden ◽  
C.M. Buddle

We studied populations of three tundra-dwelling wolf spider (Lycosidae) species to determine reproductive trait relationships and developmental timing in the Arctic. We collected 451 Pardosa lapponica (Thorell, 1872), 176 Pardosa sodalis Holm, 1970, and 117 Pardosa moesta Banks, 1892 during summer 2008. We used log-likelihood ratio tests and multiple linear regressions to determine the best predictors of fecundity and relative reproductive effort. Female body size best explained the variation in fecundity and body condition was the best predictor for relative reproductive effort. We tested for a trade-off between the allocation of resources to individual eggs and the number of eggs produced (fecundity) within each species using linear regression. There was variation in detectable egg size and number trade-offs among sites and these may be related to local variation in resource allocation linked to density-related biotic or abiotic factors. These findings contribute to knowledge about the fitness of arctic wolf spiders in the region of study and are particularly relevant in light of the effects that climate changes are predicted to have on the arctic fauna.


Sign in / Sign up

Export Citation Format

Share Document