scholarly journals Retrieval of Summer Sea Ice Concentration in the Pacific Arctic Ocean from AMSR2 Observations and Numerical Weather Data Using Random Forest Regression

2021 ◽  
Vol 13 (12) ◽  
pp. 2283
Author(s):  
Hyangsun Han ◽  
Sungjae Lee ◽  
Hyun-Cheol Kim ◽  
Miae Kim

The Arctic sea ice concentration (SIC) in summer is a key indicator of global climate change and important information for the development of a more economically valuable Northern Sea Route. Passive microwave (PM) sensors have provided information on the SIC since the 1970s by observing the brightness temperature (TB) of sea ice and open water. However, the SIC in the Arctic estimated by operational algorithms for PM observations is very inaccurate in summer because the TB values of sea ice and open water become similar due to atmospheric effects. In this study, we developed a summer SIC retrieval model for the Pacific Arctic Ocean using Advanced Microwave Scanning Radiometer 2 (AMSR2) observations and European Reanalysis Agency-5 (ERA-5) reanalysis fields based on Random Forest (RF) regression. SIC values computed from the ice/water maps generated from the Korean Multi-purpose Satellite-5 synthetic aperture radar images from July to September in 2015–2017 were used as a reference dataset. A total of 24 features including the TB values of AMSR2 channels, the ratios of TB values (the polarization ratio and the spectral gradient ratio (GR)), total columnar water vapor (TCWV), wind speed, air temperature at 2 m and 925 hPa, and the 30-day average of the air temperatures from the ERA-5 were used as the input variables for the RF model. The RF model showed greatly superior performance in retrieving summer SIC values in the Pacific Arctic Ocean to the Bootstrap (BT) and Arctic Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice (ASI) algorithms under various atmospheric conditions. The root mean square error (RMSE) of the RF SIC values was 7.89% compared to the reference SIC values. The BT and ASI SIC values had three times greater values of RMSE (20.19% and 21.39%, respectively) than the RF SIC values. The air temperatures at 2 m and 925 hPa and their 30-day averages, which indicate the ice surface melting conditions, as well as the GR using the vertically polarized channels at 23 GHz and 18 GHz (GR(23V18V)), TCWV, and GR(36V18V), which accounts for atmospheric water content, were identified as the variables that contributed greatly to the RF model. These important variables allowed the RF model to retrieve unbiased and accurate SIC values by taking into account the changes in TB values of sea ice and open water caused by atmospheric effects.

1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


SOLA ◽  
2011 ◽  
Vol 7 ◽  
pp. 37-40 ◽  
Author(s):  
Takahiro Toyoda ◽  
Toshiyuki Awaji ◽  
Nozomi Sugiura ◽  
Shuhei Masuda ◽  
Hiromichi Igarashi ◽  
...  

2020 ◽  
Author(s):  
Clara Burgard ◽  
Dirk Notz ◽  
Leif T. Pedersen ◽  
Rasmus T. Tonboe

Abstract. The observational uncertainty in sea-ice-concentration estimates from remotely-sensed passive-microwave brightness temperatures is a challenge for reliable climate model evaluation and initialization. To address this challenge, we introduce a new tool: the Arctic Ocean Observation Operator (ARC3O). ARC3O allows us to simulate brightness temperatures at 6.9 GHz at vertical polarisation from standard output of an Earth System Model. We evaluate ARC3O by simulating brightness temperatures based on three assimilation runs of the MPI Earth System Model (MPI-ESM) assimilated with three different sea-ice concentration products. We then compare these three sets of simulated brightness temperatures to brightness temperatures measured by the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) from space. We find that they differ up to 10 K in the period between October and June, depending on the region and the assimilation run. However, we show that these discrepancies between simulated and observed brightness temperature can be mainly attributed to the underlying observational uncertainty in sea-ice concentration and, to a lesser extent, to the data assimilation process, rather than to biases in ARC3O itself. In summer, the discrepancies between simulated and observed brightness temperatures are larger than in winter and locally reach up to 20 K. This is caused by the very large observational uncertainty in summer sea-ice concentration but also by the melt-pond parametrization in MPI-ESM, which is not necessarily realistic. ARC3O is therefore capable to realistically translate the simulated Arctic Ocean climate state into one observable quantity for a more comprehensive climate model evaluation and initialization.


2016 ◽  
Author(s):  
R. T. Tonboe ◽  
S. Eastwood ◽  
T. Lavergne ◽  
A. M. Sørensen ◽  
N. Rathmann ◽  
...  

Abstract. An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of American microwave radiometer data from Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from 1978 to 2014 and updates and further developments are planned for the next phase of the project. The methodology is using: 1) numerical weather prediction (NWP) input to a radiative transfer model (RTM) for correction of the brightness temperatures for reduction of atmospheric noise, 2) dynamical algorithm tie-points to mitigate trends in residual atmospheric, sea ice and water emission characteristics and inter-sensor differences/biases, 3) and a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new algorithm has been developed to estimate the spatially and temporally varying sea ice concentration uncertainties. A comparison to sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate ice concentrations. The sea ice climate dataset is available for download at (www.osisaf.org) including documentation.


2016 ◽  
Author(s):  
Michael A. Goldstein ◽  
Amanda H. Lynch ◽  
Todd E. Arbetter ◽  
Florence Fetterer

Abstract. September open water fraction in the Arctic is analyzed using the satellite era record of ice concentration (1979–2014). This analysis suggests that there is a statistically significant breakpoint (shift in the mean) and increase in the variance around 1988 and another breakpoint around 2007 in the Pacific sector. These structural breaks are robust to the choice of algorithm used for deriving sea ice concentration from satellite data, and are also apparent in other measures of open water, such as operational ice charts and the record of navigable days from Barrow to Prudhoe Bay. Breakpoints in the Atlantic sector record of open water are evident in 1988 and 2007 but more weakly significant. The breakpoints appear to be associated with concomitant shifts in average ice age, and tend to lead change in Arctic circulation regimes. These results support the thesis that Arctic sea ice may have critical points beyond which a return to the previous state is less likely.


2021 ◽  
Author(s):  
Jinlei Chen ◽  
Shichang Kang ◽  
Wentao Du ◽  
Junming Guo ◽  
Min Xu ◽  
...  

Abstract. The retreat of sea ice is very significant in the Arctic under global warming. It is projected to continue and have great impacts on navigation. In this investigation, decadal changes in sea ice parameters were evaluated by multimodel from the Coupled Model Intercomparison Project Phase 6, and Arctic navigability was assessed under two shared socioeconomic pathways (SSPs) and two vessel classes within the Arctic transportation accessibility model. The sea ice extent is expected to decrease along the SSP5-8.5 scenario with a high possibility under current emissions and climate change. The decadal decreasing rate will increase in March but decrease in September until 2060 when the oldest ice completely disappears and sea ice changes reach an irreversible tipping point. The sea ice thickness will decrease and transit in parts of the Arctic and will decline overall by −0.22 m per decade after September 2060. Both the sea ice concentration and volume will thoroughly decline with decreasing decadal rates, while the decrease in volume will be higher in March than in September. Open water ships will be able to cross the Northeast Passage and Northwest Passage in August–October 2045–2055, with a maximum navigable area in September. The opportunistic crossing time for polar class 6 (PC6) ships will advance to October–December in 2021–2030, while the maximum navigable area will be seen in October. In addition, the Central Passage will also open for PC6 ships during September–October in 2021–2030.


2016 ◽  
Author(s):  
Carolina Gabarro ◽  
Antonio Turiel ◽  
Pedro Elosegui ◽  
Joaquim A. Pla-Resina ◽  
Marcos Portabella

Abstract. We present a new method to estimate sea ice concentration in the Arctic Ocean using brightness temperature observations from the Soil Moisture Ocean Salinity (SMOS) interferometric satellite. The method, which employs a Maximum Likelihood Estimator (MLE), exploits the marked difference in radiative properties between sea ice and seawater, in particular when observed over the wide range of satellite viewing angles afforded by SMOS. Observations at L-band frequencies such as those from SMOS (i.e., 1.4 GHz, or equivalently 21-cm wavelength) are advantageous to remote sensing of sea ice because the atmosphere is virtually transparent at that frequency. We find that sea ice concentration is well determined (correlations of about 0.75) as compared to estimates from other sensors such as the Special Sensor Microwave/Imager (SSM/I and SSMIS). We also find that the efficacy of the method decreases under thin sea ice conditions (ice thickness


2020 ◽  
Vol 14 (7) ◽  
pp. 2387-2407 ◽  
Author(s):  
Clara Burgard ◽  
Dirk Notz ◽  
Leif T. Pedersen ◽  
Rasmus T. Tonboe

Abstract. The observational uncertainty in sea ice concentration estimates from remotely sensed passive microwave brightness temperatures is a challenge for reliable climate model evaluation and initialization. To address this challenge, we introduce a new tool: the Arctic Ocean Observation Operator (ARC3O). ARC3O allows us to simulate brightness temperatures at 6.9 GHz at vertical polarization from standard output of an Earth System Model. To evaluate sources of uncertainties when applying ARC3O, we compare brightness temperatures simulated by applying ARC3O on three assimilation runs of the MPI Earth System Model (MPI-ESM), assimilated with three different sea ice concentration products, with brightness temperatures measured by the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) from space. We find that the simulated and observed brightness temperatures differ up to 10 K in the period between October and June, depending on the region and the assimilation run. We show that these discrepancies between simulated and observed brightness temperature can be attributed mainly to the underlying observational uncertainty in sea ice concentration and, to a lesser extent, to the data assimilation process, rather than to biases in ARC3O itself. In summer, the discrepancies between simulated and observed brightness temperatures are larger than in winter and locally reach up to 20 K. This is caused by the very large observational uncertainty in summer sea ice concentration and the melt pond parametrization in MPI-ESM, which is not necessarily realistic. ARC3O is therefore capable of realistically translating the simulated Arctic Ocean climate state into one observable quantity for a more comprehensive climate model evaluation and initialization.


2016 ◽  
Vol 10 (5) ◽  
pp. 2275-2290 ◽  
Author(s):  
Rasmus T. Tonboe ◽  
Steinar Eastwood ◽  
Thomas Lavergne ◽  
Atle M. Sørensen ◽  
Nicholas Rathmann ◽  
...  

Abstract. An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of microwave radiometer data from NASA's Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from October 1978 to April 2015 and updates and further developments are planned for the next phase of the project. The methodology for computing the sea ice concentration uses (1) numerical weather prediction (NWP) data input to a radiative transfer model for reduction of the impact of weather conditions on the measured brightness temperatures; (2) dynamical algorithm tie points to mitigate trends in residual atmospheric, sea ice, and water emission characteristics and inter-sensor differences/biases; and (3) a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new sea ice concentration uncertainty algorithm has been developed to estimate the spatial and temporal variability in sea ice concentration retrieval accuracy. A comparison to US National Ice Center sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate sea ice concentrations between open water and 100 % ice. The sea ice concentration climate data record is available for download at www.osi-saf.org, including documentation.


Sign in / Sign up

Export Citation Format

Share Document