Evidence for reversal of basin polarity during carbonate ramp development in the Mesoproterozoic Borden Basin, Baffin Island

2002 ◽  
Vol 39 (4) ◽  
pp. 519-538 ◽  
Author(s):  
Anne G Sherman ◽  
Noel P James ◽  
Guy M Narbonne

Distribution of facies in the lower half of the Bylot Supergroup suggests overall westward deepening of the Mesoproterozoic Borden Basin. In marked contrast, the upper half of the succession records a reversal in the overall bathymetric trend, such that the eastern portion underwent relative deepening as the west experienced relative shallowing. Strata deposited during this reversal belong to the Victor Bay Formation, a ramp composed predominantly of limestone. Karsting of carbonate strata and development of an angular unconformity in the west contrast with back-stepping and drowning of the ramp in the east, followed by mantling by deep-water limestone, carbonaceous carbonate, and turbidites. Increased accommodation space during this time, via both tectonic subsidence and eustatic sea-level rise, led to a profusion of stromatolite pinnacle reefs and large biostromes. The reversal of basin polarity is best reconciled with development of a distal foreland basin superimposed on the Borden aulacogen. Crustal rethickening and uplift occurred along reactivated basement faults during an eastward-directed compressional event and could be related to thrusting of similar age and vergence in the Coppermine River Group of northwestern Canada.

2015 ◽  
Vol 11 (4) ◽  
pp. 669-685 ◽  
Author(s):  
C. Consolaro ◽  
T. L. Rasmussen ◽  
G. Panieri ◽  
J. Mienert ◽  
S. Bünz ◽  
...  

Abstract. We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as −4.37‰ in CIE I, correlating with the Bølling–Allerød interstadials, and as low as −3.41‰ in CIE II, correlating with the early Holocene. In the Bølling–Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as −2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.


2006 ◽  
Vol 177 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Ludovic Mocochain ◽  
Georges Clauzon ◽  
Jean-Yves Bigot

Abstract The Messinian salinity crisis is typically recorded by evaporites in the abyssal plains of the Mediterranean Sea and by canyons incised into the Mediterranean margins and their hinterlands. However, the impacts of crisis on geomorphology and surface dynamics lasted, until canyons were filled by sediments in the Pliocene (fig. 2). In the mid-Rhône valley, the Ardeche Cretaceous carbonate platform is incised over 600 m by the Rhône Messinian canyon. The canyon thalweg is located – 236 m bsl (below sea level) in the borehole of Pierrelatte [Demarcq, 1960; fig. 1]. During the Pliocene, this canyon was flooded as a ria and infilled by a Gilbert type fan delta [Clauzon and Rubino, 1992; Clauzon et al., 1995]. The whole Messinian-Pliocene third order cycle [Haq et al., 1987] generated four benchmark levels. The first two are [Clauzon, 1996]: (i) The pre-evaporitic abandonment surface which is mapped around the belvedere of Saint-Restitut (fig. 1). This surface is synchronous [Clauzon, 1996] of the crisis onset (5.95 Ma) [Gautier et al., 1994; Krigjsman et al., 1999] and, consequently, is an isochronous benchmark. (ii) The Messinian erosional surface is also an isochronous benchmark due to the fast flooding [Blanc, 2002] of the Rhône canyon, becoming a ria at 5.32 Ma [Hilgen and Langereis, 1988]. These surfaces are the result of endoreic Mediterranean sea level fall more than a thousand meters below the Atlantic Ocean. A huge accommodation space (up to more than 1000 m) was created as sea-level rose up to 80 m above its present-day level (asl) during the Pliocene highstand of cycle TB 3.4 (from 5.32 to 3.8 Ma). During the Lower Pliocene this accommodation space was filled by a Gilbert fan delta. This history yields two other benchmark levels: (i) the marine/non marine Pliocene transition which is an heterochronous surface produced by the Gilbert delta progradation. This surface recorded the Pliocene highstand sea level; (ii) the Pliocene abandonment surface at the top of the Gilbert delta continental wedge. Close to the Rhône-Ardeche confluence, the present day elevations of the four reference levels are (evolution of base-level synthesized in fig. 4): (1) 312 m asl, (2) 236 m bsl, (3) 130 m asl, (4) 190 m asl. The Ardèche carbonate platform underwent karstification both surficial and at depth. The endokarst is characterized by numerous cavities organised in networks. Saint-Marcel Cave is one of those networks providing the most complete record (fig. 5). It opens out on the northern side of the Ardeche canyon at an altitude of 100 m. It is made up by three superposed levels extending over 45 km in length. The lower level (1) is flooded and functionnal. It extends beneath the Ardeche thalweg down to the depth of 10 m bsl reached by divers. The observations collected in the galleries lead us to the conclusion that the karst originated in the vadose area [Brunet, 2000]. The coeval base-level was necessarily below those galleries. The two other levels (middle (2) and upper (3)) are today abandoned and perched. The middle level is about 115 m asl and the upper one is about 185 m asl. They are horizontal and have morphologies specific to the phreatic and temporary phreatic zone of the karst (fig. 6). In literature, the terracing of the Saint-Marcel Cave had been systematically interpreted as the result of the lowering by steps of the Ardeche base-level [Guérin, 1973; Blanc, 1995; Gombert, 1988; Debard, 1997]. In this interpretation, each deepening phase of the base level induces the genesis of the gravitary shaft and the abandonment of the previous horizontal level. The next stillstand of base level leads to the elaboration of a new horizontal level (fig. 7). This explanation is valid for most of Quaternary karsts, that are related to glacioeustatic falls of sea-level. However our study on the Saint-Marcel Cave contests this interpretation because all the shafts show an upward digging dynamism and no hint of vadose sections. The same “per ascensum” hydrodynamism was prevailing during the development of the whole network (figs. 8 and 9). We interpret the development of the Ardeche endokarst as related to the eustatic Messinian-Pliocene cycle TB 3.4/3.5 recorded by the Rhône river. The diving investigations in the flooded part of the Saint-Marcel Cave and also in the vauclusian springs of Bourg-Saint-Andeol reached - 154 m bsl. Those depths are compatible only with the incision of the Messinian Rhône canyon at the same altitude (−236 m bsl). The Saint-Marcel lower level would have develop at that time. The ascending shaping of levels 2 and 3 is thus likely to have formed during the ensuing sea-level rise and highstand during the Pliocene, in mainly two steps: (i) the ria stage controlled by the Mediterranean sea level rise and stillstand; (ii) the rhodanian Gilbert delta progradation, that controlled the genesis of the upper level (fig. 10).


2014 ◽  
Vol 71 (4) ◽  
Author(s):  
Gill J. Ainee ◽  
A.M. Anwar ◽  
S. Omar K

Climate change has brought about many threats to the ecosystem by inducing natural hazards, particularly sea level rise. Coastal areas then are subjected to many adverse effects of sea level rise, hence posing a risk to the safety of the coastal population, resources and assets. As part of the mitigation and adaptation measures against these effects, the Coastal Vulnerability Index (CVI) was implemented by many coastal regions. The CVI is an index-based tool to map the risks related to coastal changes. In Malaysia, the practice of CVI is still in its initial stages. Whereby, the Department of Irrigation and Drainage (DID) Malaysia had earlier carried out two pilot projects on CVI. The first is located at Tanjung Piai and the second at the west coast of Pulau Langkawi. This paper reviews the definition and concept of CVI. An alternative implementation approach of CVI in Malaysia is also discussed.


2020 ◽  
Author(s):  
Peter Robins ◽  
Lisa Harrison ◽  
Mariam Elnahrawi ◽  
Matt Lewis ◽  
Tom Coulthard ◽  
...  

<p>Coastal flooding worldwide causes the vast majority of natural disasters; for the UK costing £2.2 billion/year. Fluvial and surge-tide extremes can occur synchronously resulting in combination flooding hazards in estuaries, intensifying the flood risk beyond fluvial-only or surge-only events. Worse, this flood risk has the potential to increase further in the future as the frequency and/or intensity of these drivers change, combined with projected sea-level rise. Yet, the sensitivity of contrasting estuaries to combination and compound flooding hazards at sub-daily scales – now and in the future – is unclear. Here, we investigate the dependence between fluvial and surge interactions at sub-daily scales for contrasting catchment and estuary types (Humber vs. Dyfi, UK), using 50+ years of data: 15-min fluvial flows and hourly sea levels. Additionally, we simulate intra-estuary (<50 m resolution) sensitivities to combination flooding hazards based on: (1) realistic extreme events (worst-on-record); (2) realistic events with shifted timings of the drivers to maximise flooding; and (3) modified drivers representing projected climate change.</p><p>For well-documented flooding events, we show significant correlation between skew surge and peak fluvial flow, for the Dyfi (small catchment and estuary with a fast fluvial response on the west coast of Britain), with a higher dependence during autumn/winter months. In contrast, we show no dependence for the Humber (large catchment and estuary with a slow fluvial response on the east coast of Britain). Cross-correlation results, however, did show correlation with a time lag (~10 hours). For the Dyfi, flood extent was sensitive to the relative timing of the fluvial and surge-tide drivers. In contrast, the relative timing of these drivers did not affect flooding in the Humber. However, extreme fluvial flows in the Humber actually reduced water levels in the outer estuary, compared with a surge-only event. Projected future changes in these drivers by 2100 are likely to increase combination flooding hazards: sea-level rise scenarios predicted substantial and widespread flooding in both estuaries. However, similar increases in storm surge resulted in a greater seawater influx, altering the character of the flooding. Projected changes in fluvial volumes were the weakest driver of estuarine flooding. On the west coast of Britain containing many small/steep catchments, combination flooding hazards from fluvial and surges extremes occurring together is likely. Moreover, high-resolution data and hydrodynamic modelling are necessary to resolve the impact and inform flood mitigation methodology.</p>


2015 ◽  
Vol 8 (11) ◽  
pp. 9925-9963 ◽  
Author(s):  
D. Pollard ◽  
W. Chang ◽  
M. Haran ◽  
P. Applegate ◽  
R. DeConto

Abstract. A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ~ 20 000 years. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree quite well with the more advanced techniques, but only for a large ensemble with full factorial parameter sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 years into the "future" with idealized ramped climate warming. In the majority of runs with reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty bounds.


Author(s):  
Carlos Antunes

Data collected at the Cascais tide gauge, located on the west coast of Portugal Mainland, have been analyzed and sea level rise rates have been updated. Based on a bootstrapping linear regression model and on polynomial adjustments, time series are used to calculate different empirical projections for the 21st century sea level rise, by estimating the initial velocity and its corresponding acceleration. The results are consistent to an accelerated sea level rise, showing evidence of a faster rise than previous century estimates. Based on different numerical methods of second order polynomial fitting, it is possible to build a set of projection models of relative sea level rise. Appling the same methods to regional sea level anomaly from satellite altimetry, additional projections are also built with good consistency. Both data sets, tide gauge and satellite altimetry data, enabled the development of an ensemble of projection models. The relative sea level rise projections are crucial for national coastal planning and management since extreme sea level scenarios can potentially cause erosion and flooding. Based on absolute vertical velocities obtained by integrating global sea level models, neo-tectonic studies and permanent Global Positioning System (GPS) station time series, it is possible to transform relative into absolute sea level rise scenarios, and vice-versa, allowing the generation of absolute sea level rise projection curves and its comparison with already established global projections. The sea level rise observed at the Cascais tide gauge has always shown a significant correlation with global sea level rise observations, evidencing relatively low rates of composed vertical land velocity from tectonic and post-glacial isostatic adjustment, and residual synoptic regional dynamic effects rather than a trend. An ensemble of sea level projection models for the 21st century is proposed with its corresponding probability density function, both for relative and absolute sea level rise for the west coast of Portugal Mainland.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kerrylee Rogers ◽  
Neil Saintilan

The fate of coastal wetlands and their ecosystem services is dependent upon maintaining substrate elevations within a tidal frame that is influenced by sea-level rise. Development and application of morphodynamic models has been limited as few empirical studies have measured the contribution of key processes to surface elevation change, including mineral and organic matter addition, autocompaction of accumulating sediments and deep subsidence. Accordingly, many models presume that substrates are in equilibrium with relative sea-level rise (RSLR) and the composition of substrates are relatively homogenous. A 20-year record of surface elevation change and vertical accretion from a large tidal embayment in Australia coupled with analyses of inundation frequency and the character of sediments that have accumulated above mean sea level was analyzed to investigate processes influencing surface elevation adjustment. This study confirms the varying contribution of addition, decomposition and compression of organic material, and mineral sediment consolidation. Autocompaction of substrates was proportional to the overburden of accumulating sediments. These processes operate concurrently and are influenced by sediment supply and deposition. Vertical accretion was linearly related to accommodation space. Surface elevation change was related to vertical accretion and substrate organic matter, indicated by carbon storage above mean sea level. Surface elevation change also conformed to models that initially increase and then decrease as accommodation space diminishes. Rates of surface elevation change were largely found to be in equilibrium with sea-level rise measured at the nearest tide gauge, which was estimated at 3.5 mm y–1 over the period of measurements. As creation of new accommodation space with sea-level rise is contrary to the longer-term history of relative sea-level stability in Australia since the mid-Holocene, striking stratigraphic variation arises with deeper sediments dominated by mineral sands and surficial sediments increasingly fine grained and having higher carbon storage. As the sediment character of substrates was found to influence rates of surface elevation gain, we caution against the unqualified use of models derived from the northern hemisphere where substrates have continuously adjusted to sea-level rise and sediment character is likely to be more homogenous.


Sign in / Sign up

Export Citation Format

Share Document