A U–Pb geochronological review of the Proterozoic history of the eastern Grenville Province

2002 ◽  
Vol 39 (5) ◽  
pp. 795-829 ◽  
Author(s):  
Charles F Gower ◽  
Thomas E Krogh

The geological evolution of the eastern Grenville Province can be subdivided into three stages. During the first stage, namely pre-Labradorian (> 1710 Ma) and Labradorian (1710–1600 Ma) events, a continental-marginal basin was created and subsequently destroyed during accretion of a magmatic arc formed over a south-dipping subduction zone. Subduction was short-lived and arrested, leading to a passive continental margin. The second stage addresses events between 1600 and 1230 Ma. The passive margin lasted until 1520 Ma, following which a continental-margin arc was constructed during Pinwarian (1520–1460 Ma) orogenesis. Elsonian (1460–1230 Ma) distal-inboard, mafic and anorthositic magmatism, decreasing in age northward, is explained by funnelled flat subduction, possibly associated with an overridden spreading centre. As the leading edge of the lower plate advanced, it was forced beneath the Paleoproterozoic Torngat orogen root between the Archean Superior and North Atlantic cratons, achieving its limit of penetration by 1290 Ma. Static north-northeast-trending rifting then ensued, with mafic magmatism flanked by felsic products to the north and south. Far-field orogenic effects heralded the third stage, lasting from 1230 to 955 Ma. Until 1180 Ma, the eastern Grenville Province was under the distal, mild influence of Elzevirian orogenesis. From 1180 to 1120 Ma, mafic and anorthositic magmatism occurred, attributed to back-arc tectonism inboard of a post-Elzevirian Laurentian margin. Quiescence then prevailed until Grenvillian (1080–980 Ma) continent–continent collision. Grenvillian orogenesis peaked in different places at different times as thrusting released stress, thereby precipitating its shift elsewhere (pressure-point orogenesis). High-grade metamorphism, thrusting and minor magmatism characterized the Exterior Thrust Zone, in contrast to voluminous magmatism in the Interior Magmatic Belt. Following final deformation, early posttectonic anorthositic–alkalic–mafic magmatism (985–975 Ma) and late posttectonic monzonitic–syenite–granite magmatism (975–955 Ma) brought the active geological evolution of this region to a close.

Geosphere ◽  
2021 ◽  
Author(s):  
Robert Fox ◽  
Michael P. Searle

During the Caledonian orogeny, the Moine thrust zone in northwestern Scotland (UK) emplaced Neoproterozoic Moine Supergroup rocks, metamorphosed during the Ordovician (Grampian) and Silurian (Scandian) orogenic periods, westward over the Laurentian passive margin in the northern highlands of Scotland. The Laurentian margin comprises Archean–Paleoproterozoic granulite and amphibolite facies basement (Scourian and Laxfordian complexes, Lewisian gneiss), Proterozoic sedimentary rocks (Stoer and Torridon Groups), and Cambrian–Ordovician passive-margin sediments. Four major thrusts, the Moine, Ben More, Glencoul, and Sole thrusts, are well exposed in the Assynt window. Two highly alkaline syenite intrusions crop out within the Moine thrust zone in the southern Assynt window. The Loch Ailsh and Loch Borralan intrusions range from ultramafic melanite-biotite pyroxenite and pseudoleucite-bearing biotite nepheline syenite (borolanite) to alkali-feldspar–bearing and quartz-bearing syenites. Within the thrust zone, syenites intrude up to the Ordovician Durness Group limestones and dolomites, forming a high-temperature contact metamorphic aureole with diopside-forsterite-phlogopite-brucite marbles exposed at Ledbeg quarry. Controversy remains as to whether the Loch Ailsh and Loch Borralan syenites were intruded prior to thrusting or intruded syn- or post-thrusting. Borolanites contain large white leucite crystals pseudomorphed by alkali feldspar, muscovite, and nepheline (pseudoleucite) that have been flattened and elongated during ductile shearing. The minerals pseudomorphing leucites show signs of ductile deformation indicating that high-temperature (~500 °C) deformation acted upon pseudomorphed leucite crystals that had previously undergone subsolidus breakdown. New detailed field mapping and structural and petrological observations are used to constrain the geological evolution of both the Loch Ailsh and the Loch Borralan intrusions and the chronology of the Moine thrust zone. The data supports the interpretation that both syenite bodies were intruded immediately prior to thrusting along the Moine, Ben More, and Borralan thrusts.


2010 ◽  
Vol 47 (5) ◽  
pp. 591-620 ◽  
Author(s):  
Andrew Hynes ◽  
Toby Rivers

The Grenville Orogen in North America is interpreted to have resulted from collision between Laurentia and another continent, probably Amazonia, at ca. 1100 Ma. The exposed segment of the orogen was derived largely from reworked Archean to Paleoproterozoic Laurentian crust, products of a long-lived Mesoproterozoic continental-margin arc and associated back arc, and remnants of one or more accreted mid-Mesoproterozoic island-arc terranes. A potential suture, preserved in Grenvillian inliers of the southeastern USA, may separate rocks of Laurentian and Amazonian affinities. The Grenvillian Orogeny lasted more than 100 million years. Much of the interior Grenville Province, with peak metamorphism at ca. 1090–1020 Ma, consists of uppermost amphibolite- to granulite-facies rocks metamorphosed at depths of ca. 30 km, but areas of lower crustal, eclogite-facies nappes metamorphosed at 50–60 km depth also occur and an orogenic lid that largely escaped Grenvillian metamorphism is preserved locally. Overall, deformation and regional metamorphism migrated sequentially to the northwest into the Laurentian craton, with the youngest contractional structures in the northwestern part of the orogen at ca. 1000–980 Ma. The North American lithospheric root extends across part of the Grenville Orogen, where it may have been produced by depletion of sub-continental lithospheric mantle beneath the long-lived Laurentian-margin Mesoproterozoic subduction zone. Both the Grenville Orogen and the Himalaya–Tibet Orogen have northern margins characterized by long-lived subduction before continental collision and protracted convergence following collision. Both exhibit cratonward-propagating thrusting. In the Himalaya–Tibet Orogen, however, the pre-collisional Eurasian-margin arc is high in the structural stack, whereas in the Grenville Orogen, the pre-collisional continental-margin arc is low in the structural stack. We interpret this difference as due to subduction reversal in the Grenville case shortly before collision, so that the continental-margin arc became the lower plate during the ensuing orogeny. The structurally low position of the warm, extended Laurentian crust probably contributed significantly to the ductility of lower and mid-crustal Grenvillian rocks.


Author(s):  
J.F. Dewey ◽  
J.F. Casey

Abstract. The narrow, short-lived Taconic-Grampian Orogen occurs along the north-western margin of the Appalachian-Caledonian Belt from, at least, Alabama to Scotland, a result of the collision of a series of early Ordovician oceanic island arcs with the rifted margin of Laurentia. The present distribution of Taconian-Grampian ophiolites is unlikely to represent a single fore-arc from Alabama to Scotland colliding at the same time with the continental margin along its whole length; more likely is that there were several Ordovician arcs with separate ophiolites. The collision suture is at the thrust base of obducted fore-arc ophiolite complexes, and obduction distance was about two hundred kilometres. Footwalls to the ophiolites are, sequentially towards the continent, continental margin rift sediments and volcanics and overlying rise sediments, continental shelf slope carbonates, and sediments of foreland flexural basins. The regionally-flat obduction thrust complex between the ophiolite and the rifted Laurentian margin is the collision suture between arc and continent. A particular problem in drawing tectonic profiles across the Taconic-Grampian Zone is several orogen-parallel major strike-slip faults, both sinistral and dextral, of unknown displacements, which may juxtapose portions of different segments. In western Newfoundland, most of the Grenville basement beneath the Fleur-de-Lys metamorphic complex (Neoproterozoic to early Ordovician meta-sediments) was eclogitised during the Taconic Orogeny and separated by a massive shear zone from the overlying Fleur-de-Lys, which was metamorphosed at the same time but in the amphibolite facies. The shear zone continued either to a distal intracontinental “subduction zone” or to the main, sub-fore-arc, subduction zone beneath which the basement slipped down to depths of up to seventy kilometres at the same time as the ophiolite sheet and its previously-subcreted metamorphic sole were being obducted above. Subsequently, the eclogitised basement was returned to contact with the amphibolite-facies cover by extensional detachment eduction, possibly enhanced by subduction channel flow, which may have been caused by slab break-off and extension during subduction polarity flip. Although the basal ophiolite obduction thrust complex and the Fleur-de-Lys-basement subduction-eduction surfaces must have been initially gently-dipping to sub-horizontal, they were folded and broken by thrusts during late Taconian, late Ordovician Salinic-Mayoian, and Acadian shortening.


2020 ◽  
Vol 47 (3) ◽  
pp. 103-118
Author(s):  
Cees Van Staal ◽  
Alexandre Zagorevski

We argue there is no distinction between accretion and collision as a process, except when accretion is used in the sense of incorporating small bodies of sedimentary and/or volcanic rocks into an accretionary wedge by off-scraping or underplating. There is also a distinction when these terms are used in classifying mountain belts into accretionary and collisional orogens, although such classifications are commonly based on a qualitative assessment of the scale and nature of the accreted terranes and continents involved in formation of mountain belts. Soft collisions occur when contractional deformation and associated metamorphism are principally concentrated in rocks of the leading edge of the partially pulled-down buoyant plate and the upper plate forearc terrane. Several young arc-continent collisions show evidence for partial or wholesale subduction of the forearc such that the arc is structurally juxtaposed directly against lower plate rocks. This process may explain the poor preservation of forearcs in the geological record. Soft collisions generally change into hard collisions over time, except if the collision is rapidly followed by formation of a new subduction zone due to step-back or polarity reversal. Thickening and metamorphism of the arc's suprastructure and retro-arc part of upper plate due to contractional deformation and burial are the characteristics of a hard collision or an advancing Andean-type margin. Strong rheological coupling of the converging plates and lower and upper crust in the down-going continental margin promotes a hard collision. Application of the soft–hard terminology supports a structural juxtaposition of the Taconic soft collision recorded in the Humber margin of western Newfoundland with a hard collision recorded in the adjacent Dashwoods block. It is postulated that Dashwoods was translated dextrally along the Cabot-Baie Verte fault system from a position to the north of Newfoundland where the Notre Dame arc collided ca. 10 m.y. earlier with a wide promontory in a hyperextended segment of the Laurentian margin.


Geosphere ◽  
2021 ◽  
Author(s):  
Stephen C. Dobbs ◽  
Nancy R. Riggs ◽  
Kathleen M. Marsaglia ◽  
Carlos M. González-León ◽  
M. Robinson Cecil ◽  
...  

The southwestern margin of Laurentia transitioned from a left-lateral transform margin to a convergent margin by middle Permian time, which initiated the development of a subduction zone and subsequent Cordilleran arc along western Laurentia. The displaced Caborca block was translated several hundred kilometers from southern California, USA, to modern Sonora, Mexico, beginning in Pennsylvanian time (ca. 305 Ma). The Monos Formation, a ~600-m-thick assemblage of mixed bioclastic and volcaniclastic units exposed in northwestern Sonora, provides lithostratigraphic, petrographic, and geochronologic evidence for magmatic arc development associated with subduction by middle Permian time (ca. 275 Ma). The Monos Formation was deposited in a forearc basin adjacent to a magmatic arc forming along the southwestern Laurentian margin. Detrital zircon U-Pb geochronology suggests that Permian volcanic centers were the primary source for the Monos Formation. These grains mixed with far-traveled zircons from both Laurentia and Gondwana. Zircon age spectra in the Monos Formation are dominated by a ca. 274 Ma population that makes up 65% of all analyzed grains. The remaining 35% of grains range from 3.3 Ga to 0.3 Ma, similar to age spectra from Permian strata deposited in the Paleozoic sequences in the western continental interior. An abundance of Paleozoic through early Neoproterozoic ages suggests that marginal Gondwanan sources from Mexico and Central America also supplied material to the basin. The Monos Formation was deposited within tropical to subtropical latitudes, yet faunal assemblages are biosiliceous and heterotrophic. The lack of photozoan assemblages suggests that cold-water coastal upwelling combined with sedimentation from the Cordilleran arc and Laurentian continent promoted conditions more suitable for fauna resilient to biogeochemically stressed environments. We propose that transform faulting and displacement of the Caborca block ceased by middle Permian time and a subduction zone developed along the southwestern margin of Laurentia as early as early Permian time. The Monos basin developed along the leading edge of the continent as a magmatic arc developed, and facies indicate a consistent shoaling trend over the span of deposition.


Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Thomas Hadlari ◽  
R. W. C. Arnott ◽  
W. A. Matthews ◽  
T. P. Poulton ◽  
K. Root ◽  
...  

Abstract The origin of the passive margin forming the paleo-Pacific western edge of the ancestral North American continent (Laurentia) constrains the breakup of Rodinia and sets the stage for the Phanerozoic evolution of Laurentia. The Windermere Supergroup in the southern Canadian Cordillera records rift-to-drift sedimentation in the form of a prograding continental margin deposited between ~730 and 570 Ma. New U-Pb detrital zircon analysis from samples of the post-rift deposits shows that the ultimate source area was the shield of NW Laurentia and the near uniformity of age spectra are consistent with a stable continental drainage system. No western sediment source area was detected. Detrital zircon from postrift continental slope deposits are a proxy for ca. 676-656 Ma igneous activity in the Windermere basin, likely related to continental breakup, and set a maximum depositional age for slope deposits on the eastern side of the basin at 652±9 Ma. These results are consistent with previous interpretations. The St. Mary-Moyie fault zone near the Canada-U.S. border was most likely a major transform boundary separating a rifted continental margin to the north from intracratonic rift basins to the south, resolving north-south variations along western Laurentia in the late Neoproterozoic at approximately 650-600 Ma. For Rodinia reconstructions, the conjugate margin to the southern Canadian Cordillera would have a record of rifting between ~730 and 650 Ma followed by passive margin sedimentation.


2000 ◽  
Vol 37 (2-3) ◽  
pp. 359-383 ◽  
Author(s):  
Toby Rivers ◽  
David Corrigan

A continental-margin magmatic arc is inferred to have existed on the southeastern (present coordinates) margin of Laurentia from Labrador to Texas from ~1500-1230 Ma, with part of the arc subsequently being incorporated into the 1190-990 Ma collisional Grenville Orogen. Outside the Grenville Province, where the arc is known as the Granite-Rhyolite Belt, it is undeformed, whereas within the Grenville Province it is deformed and metamorphosed. The arc comprises two igneous suites, an inboard, principally quartz monzonitic to granodioritic suite, and an outboard tonalitic to granodioritic suite. The quartz monzonite-granodiorite suite was largely derived from continental crust, whereas the tonalitic-granodiorite suite is calc-alkaline and has a juvenile isotopic signature. Available evidence from the Grenville Province suggests that the arc oscillated between extensional and compressional settings several times during the Mesoproterozoic. Back-arc deposits of several ages, that formed during relatively brief periods of extension, include (1) mafic dyke swarms subparallel to the arc; (2) continental sediments, bimodal volcanics and plateau basalts; (3) marine sediments and volcanics formed on stretched continental crust; and (4) ocean crust in a marginal basin. Closure of the back-arc basins occurred during the accretionary Pinwarian (~1495-1445 Ma) and Elzevirian (~1250-1190 Ma) orogenies, as well as during three pulses of crustal shortening associated with the 1190-990 Ma collisional Grenvillian Orogeny. During the Elzevirian Orogeny, closure of the Central Metasedimentary Belt marginal basin in the southeastern Grenville Province was marked by subduction-related magmatism as well as by imbrication of back-arc deposits. The presence of a continental-margin magmatic arc on southeastern Laurentia during the Mesoproterozoic implies that other coeval magmatism inboard from the arc took place in a back-arc setting. Such magmatism was widespread and chemically diverse and included large volume "anorogenic" anorthosite-mangerite-charnockite-granite (AMCG) complexes as well as small volume alkaline, quartz-saturated and -undersaturated "within-plate" granitoids. Recognition of the ~300 million year duration of the Mesoproterozoic convergent margin of southeastern Laurentia suggests that there may be useful parallels with the evolution of the Andes, which has been a convergent margin since the early Paleozoic.


1980 ◽  
Vol 29 ◽  
pp. 77-101
Author(s):  
Hans Christian Larsen

The East Greenland continental margin can be divided into a northern area showing evidence for plate separation and suturing of Hudsonian, Grenvillian and Caledonian ages followed by post-Late Caledonian molasse sedimentation and Mesozoic rifting, and a southern area which apparently formed a cratonic block from the Early Proterozoic to the Middle Cretaceous. The whole margin was finally separated from the NW European margin by sea floor spreading in the latest Paleocene to earliest Eocene and now forms a rifted passive margin. The Tertiary consists of thin pre-drift sediments overlain by 1-7 km of Late Paleocene basaltic lavas extruded immediately prior to active spreading. Subsequent subsidence of the shelf led to accumulation of 2--8 km of post-basaltic sediments offshore whereas the land area was uplifted 1-2 km. Initiation of spreading along the Kolbeinsey Ridge during the late Oligocene was accompanied by renewed tectonism within the middle part of the margin. Finally the shelf was characterized by strong progradation during the Miocene. Backwards rotation of the inferred ocean-to-continent transition, through the total pole of opening, favours a slightly modified Talwani and Eldholm pole which provides a pre-drift fit of the two margins with no major overlap or gaps between the southern tip of Greenland and the Greenland-Senja Fracture Zone. Comparison of the Greenland margin and the V0ring Plateau implies a genesis for the latter, different from that proposed by Talwani and Eldholm. Minor revisions of the spreading history are presented including repeated westward displacement of the southernmost part of Mohns Ridge between anomaly 24 and 21, commencement of spreading around Kolbeinsey Ridge not later than anomaly 6 and associated activation of the recent active part of Jan Mayen Fracture Zone (JMFZ), to the north of the previous active part. The area between the fossil part of JMFZ and the recent active part including the northern part of Jan Mayen Ridge is suggested to have formed around a southern extension of Mohns Ridge active until about anomaly 6 and the predicted position of the extinct axis correlates well with bathymetry.


2016 ◽  
Vol 53 (11) ◽  
pp. 1312-1335 ◽  
Author(s):  
Boris A. Natal’in ◽  
Gürsel Sunal ◽  
Erkan Gün ◽  
Bo Wang ◽  
Yang Zhiqing

The Strandja Massif, northwestern Turkey, forms a link between the Balkan Zone of Bulgaria, which is correlated with the Variscan orogen in Europe, and the Pontides, where Cimmerian structures are prominent. Five fault-bounded tectonic units form the massif structure. (1) The Kırklareli Unit consists of the Paleozoic basement intruded by the Carboniferous to Triassic Kırklareli metagranites. It is unconformably overlain by Permian and Triassic metasediments. (2) The Vize Unit that is made of Neoproterozoic metasediments, which are intruded by Cambrian metagranites, and overlain by the pre-Ordovician molasse. Unconformably laying the Ordovician quartzites pass upward into quartz schists and then to alternating marble and chert of, possibly, latest Devonian age. Rocks of the Vize Unit are intruded by the late Carboniferous metagranites. The Vize Unit may be correlated with the passive continental margin of the Istanbul Zone. (3) The Mahya accretionary complex and (4) the paired Yavuzdere magmatic arc were formed in the Carboniferous. (5) Nappes consisting of the Jurassic dolomites and marbles thrust to the north in late Jurassic – early Cretaceous time. They occupy the highest structural position on all above-mentioned tectonic units. Tectonic subdivision of the Strandja Massif is supported by new 18 ages of magmatic and detrital zircons. The long duration of subduction-related magmatism in the region and its continuity in the Triassic contradicts with the widely accepted ideas about the dominance of the passive continental margin settings in the tectonic evolution of the Strandja Massif. The massif is interpreted as a fragment of the long-lived, Cambrian to Triassic Silk Road magmatic arc. At least since the late Paleozoic this arc evolved on the northern side of Paleo-Tethys.


Sign in / Sign up

Export Citation Format

Share Document