The postcranial skeleton, phylogenetic position, and probable lifestyle of the Early Triassic reptile Procolophon trigoniceps

2003 ◽  
Vol 40 (4) ◽  
pp. 527-556 ◽  
Author(s):  
Michael deBraga

A morphological study of the postcranial skeleton of Procolophon trigoniceps from the Lower Triassic of South Africa and Antarctica is undertaken. Procolophon shares a sister-group relationship with the procolophonid Tichvinskia from the Lower Triassic of Russia and is a basal member of Procolophonidae. This clade also includes the enigmatic taxon Sclerosaurus, believed most recently to be a pareiasaur relative. Owenettids form a separate lineage from Procolophonidae and are predominantly restricted to the Permian of both South Africa and Madagascar. A phylogenetically based assessment is considered, in which specialized modern taxa (sand lizards) are compared to their nonfossorial sister clade, allowing for "key innovations" to be identified. A similar comparison between owenettids and procolophonids reveals a number of apparent "key innovations" within procolophonids that are suggestive of a burrowing lifestyle for Procolophon.

1992 ◽  
Vol 335 (1274) ◽  
pp. 207-219 ◽  

Sphenodon has traditionally been regarded as a little changed survivor of the Permo-Triassic thecodont or eosuchian ‘stem reptiles’ but has alternatively been placed in the Lepidosauria as the plesiomorphic or even apomorphic sister-taxon of the squamates. A cladistic analysis of 16 characters from spermatozoal ultrastructure of Sphenodon and other amniotes unequivocally confirms its exceedingly primitive status. The analysis suggests that monotremes are the sister-group of birds; squamates form the sister-group of a bird + monotreme clade while the three sister-groups successively below the bird + monotreme + squa- mate assemblage are the caiman, the tuatara and the outgroup (turtles). The monotreme + bird couplet, supports the concept of the Haemothermia, but can only be regarded heuristically. The usual concept of mammals as a synapsid-derived outgroup of all other extant amniotes is not substantiated spermatologically. All cladistic analyses made, and a separate consideration of apomorphies, indicate that Sphenodon is spermatologically the most primitive amniote, excepting the Chelonia. It is advanced (apomorphic) for the amniotes in only two of the 16 spermatozoal characters considered. A close, sister-group relationship of Sphenodon with squamates is not endorsed.


Zootaxa ◽  
2005 ◽  
Vol 891 (1) ◽  
pp. 1 ◽  
Author(s):  
Magdalena Szarowska ◽  
Andrzej Falniowski ◽  
FRANK Riedel ◽  
Thomas Wilke

The phylogenetic position of the subfamily Pyrgulinae within the superfamily Rissooidea has been discussed very controversially. Different data sets not only led to different evolutionary scenarios but also to different systematic classifications of the taxon. The present study uses detailed anatomical data for two pyrgulinid taxa, the type species of the subfamily, Pyrgula annulata (Linnaeus, 1767), and the type species of the little known genus Dianella, D. thiesseana (Kobelt, 1878), as well as DNA sequencing data of three gene fragments from representatives of eight rissooidean families to A) infer the phylogenetic position of Pyrgulinae with emphasis on its relationships within the family Hydrobiidae, B) to study the degree of concordance between anatomyand DNAbased phylogenies and C) to trace the evolution of anatomical characters along a multi-gene molecular phylogeny to find the anatomical characters that might be informative for future cladistic analyses. Both anatomical and molecular data sets indicate either a very close or even sister-group relationship of Pyrgulinae and Hydrobiinae. However, there are major conflicts between the two data sets on and above the family level. Notably, Hydrobiidae is not monophyletic in the anatomical analysis. The reconstruction of anatomical character evolution indicates that many of the characters on which the European hydrobioid taxonomy is primarily based upon are problematic. The inability to clearly separate some hydrobiids from other distinct families based on those characters might explain why until only a few years ago, "Hydrobiidae" was a collecting box for numerous rissooidean taxa (mostly species with shells small and lacking any characteristic features). The present study not only stresses the need for comprehensive molecular studies of rissooidean taxa, it also demonstrates that much of the problems surrounding anatomical analyses in rissooidean taxa are due to the lack of comprehensive data for many representatives. In order to aid future comparativeanatomical studies and a better understanding of character evolution in the species-rich family Hydrobiidae, detailed anatomical descriptions for P. annulata and D. thiesseana are provided.Key words: Pyrgulinae, Pyrgula, Dianella, Hydrobiidae, phylogeny, DNA, anatomy, Greece


Zootaxa ◽  
2007 ◽  
Vol 1531 (1) ◽  
pp. 49-55 ◽  
Author(s):  
HONG-XIA CAI ◽  
JING CHE ◽  
JUN-FENG PANG ◽  
ER-MI ZHAO ◽  
YA-PING ZHANG

In order to evaluate the five species groups of Chinese Amolops based on morphological characteristics, and to clarify the phylogenetic position of the concave-eared torrent frog Amolops tormotus, we investigated the phylogeny of Amolops by maximum parsimony, Bayesian Inference, and maximum likelihood methods using two mitochondrial DNA fragments (12S rRNA, 16S rRNA). Our results supported a sister group relationship of Amolops ricketti and Amolops hainanensis. However, the grouping of Amolops mantzorum and Amolops monticola needs to be resolved with more data. Amolops tormotus was nested in genus Odorrana. Thus, recognition of the A. tormotus group is unwarranted and A. tormotus should be referred to genus Odorrana as O. tormota. This species is the sister group of O. nasica plus O. versabilis. The new classification implies that the genus Wurana is to be considered as junior subjective synonym of Odorrana.


2003 ◽  
Vol 34 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Clarke Scholtz ◽  
Vasily Grebennikov

AbstractExternal morphology of late-instar larvae and pupae of the coleopteran family Dascillidae is revised. Larvae studied for Dascillus Latreille with two species from Europe and North America, Notodascillus Carter from Australia and Pleolobus Philippi from Chile; pupae studied for D. davidsoni LeConte. Larval diagnosis and description of the family are updated. Dascillid larvae exhibit little morphological variation and share eight apparently apomorphic characters. Widely accepted sister-group relationship between Dascillidae and Rhipiceridae is not supported with larval morphology because ectoparasitic larvae of Rhipiceridae are poorly known and apparently highly modified morphologically. The superfamily Scarabaeoidea is unlikely to be a close relative of Dascillidae since this hypothesis is based mainly on habitat-dependent convergences of soil-dwellers (grub-like body shape, reduced stemmata) or possible symplesiomorphic similarities. Ten similarities between larvae of Dascillidae and Eulichadidae (Dryopoidea) were found. Some of these are possibly synapomorphies of these two groups. Larval and pupal morphology of Dascillidae is illustrated by 26 drawings.


Zootaxa ◽  
2008 ◽  
Vol 1863 (1) ◽  
pp. 1 ◽  
Author(s):  
PATRICK S. DRUCKENMILLER ◽  
ANTHONY P. RUSSELL

Leptocleidus Andrews, 1922 is a poorly known plesiosaur genus from Lower Cretaceous successions of the UK, South Africa, and Australia. Historically, there has been little consensus regarding its phylogenetic position within Plesiosauria, largely because of its seemingly aberrant combination of a relatively small skull and short neck. As a result, a diverse array of potential sister groups have been posited for Leptocleidus, including long-necked Cretaceous elasmosaurids, Early Jurassic “rhomaleosaurs”, and Middle to Late Jurassic pliosaurids. A cladistic analysis including Leptocleidus, and a new, apparently morphologically similar specimen from Alberta, TMP 94.122.01, was undertaken to assess their phylogenetic position within Plesiosauria. A character-taxon matrix was assembled afresh, consisting of 33 operational taxonomic units sampled broadly among plesiosaurs. 185 cranial and postcranial characters used in plesiosaur phylogenetics were critically reanalyzed, of which 152 were employed in the parsimony analysis. The results indicate a basal dichotomous split into the traditionally recognized pliosauroid and plesiosauroid clades. Nested within Pliosauroidea, a monophyletic Leptocleididae was recovered, consisting of L. superstes Andrews, 1922 and L. capensis (Andrews, 1911a). In contrast to earlier suggestions, Leptocleidus neither clusters with Rhomaleosaurus, which was found to be paraphyletic, nor with large-skulled pliosaurid taxa, such as Simolestes. Rather, a sister group relationship between Cretaceous Polycotylidae and Leptocleididae was recovered, which is here named Leptocleidoidea. Although TMP 94.122.01 is superficially similar to Leptocleidus, several discrete characters of the skull nest this new taxon within Polycotylidae. Compared to other phylogenetic hypotheses of plesiosaurs, these results are more congruent with respect to the stratigraphic distribution of leptocleidoids. A classification for Plesiosauria is presented.


Zootaxa ◽  
2021 ◽  
Vol 4926 (1) ◽  
pp. 79-92 ◽  
Author(s):  
ARYA SIDHARTHAN ◽  
RAJEEV RAGHAVAN ◽  
V. K. ANOOP ◽  
ASHWINI KESKAR ◽  
NEELESH DAHANUKAR

The teleostean family Balitoridae comprises small-sized freshwater fishes adapted to swift-flowing torrential mountain streams in South and South-East Asia. Little is known about their molecular phylogenetics and evolutionary biogeography, and much of the scientific literature that references them is focused on morphological taxonomy. In this paper, we generate CO1 sequences for the endemic balitorid lineages of the Western Ghats (WG) Hotspot in India, particularly for the endemic genera, Bhavania, Ghatsa and Travancoria. Integration of these data into a phylogeny revealed that the endemic WG genera together form a well-supported monophyletic clade that shows, subject to our limited taxon sampling, a sister-group relationship to the Southeast Asian genus Pseudohomaloptera. Three WG endemic species of the genus Balitora, namely B. chipkali, B. jalpalli and B. laticauda, though morphologically distinct, have low genetic divergence and barcode gap, suggestive of recent speciation. Interestingly, a fourth WG endemic, B. mysorensis, formed a clade with two species of Balitora from Eastern-Himalaya and Indo-Burma. We also show that all available CO1 sequences assigned to WG endemic balitorid genera in GenBank are misidentifications, and provide diagnostic characters for the accurate identification of these taxa in the future. 


Author(s):  
Marcello RUTA ◽  
Jennifer A. CLACK ◽  
Timothy R. SMITHSON

ABSTRACT The late Viséan anthracosauroid Eldeceeon rolfei from the East Kirkton Limestone of Scotland is re-described. Information from two originally described and two newly identified specimens broadens our knowledge of this tetrapod. A detailed account of individual skull bones and a revision of key axial and appendicular features are provided, alongside the first complete reconstructions of the skull and lower jaw and a revised reconstruction of the postcranial skeleton. In comparison to Silvanerpeton, the only other anthracosauroid from East Kirkton, Eldeceeon is characterised by a proportionally wider semi-elliptical skull, comparatively smaller nostrils set farther apart, smaller and more rounded orbits, a shorter skull table with gently convex lateral margins, and a deeper suspensorium with a straight posterior margin and a small dorsal embayment. The remarkably large hind feet and elongate toes of Eldeceeon presumably represent an adaptation for attaining high locomotory speed through increased stride length and reduced stride frequency. This would necessitate great muscle force but few muscle contractions. At the beginning of a new stride cycle, repositioning the pes anteriorly and lifting the toes off the ground would require a strong and large muscle to pull the femur upward and rotate it inward and forward. It is hypothesised that such muscle might correspond to the puboischiofemoralis internus 2, which would extend along the posterior half of the vertebral column, consistent with the occurrence of long, curved ribs in the anterior half of the trunk. Using maximum parsimony and Bayesian inference, cladistic analyses of all major groups of stem amniotes retrieve a sister group relationship between Eldeceeon and Silvanerpeton, either as the most plesiomorphic stem amniote clade or as a clade immediately crownward of anthracosauroids.


Author(s):  
Florencia Paolucci ◽  
Marta S Fernández ◽  
Mónica R Buono ◽  
José I Cuitiño

Abstract The giant sperm whale (Physeter macrocephalus) and the dwarf (Kogia sima) and pygmy (Kogia breviceps) sperm whales represent the only three extant species of physeteroids. This group has diversified during the Miocene, and the Miocene marine sediments of Patagonia (Argentina) hold one of the most important fossil records of physeteroids. In particular, ‘Aulophyseter’ rionegrensis (Gran Bajo del Gualicho Formation, Miocene), described based on two subcomplete skulls nearly a century ago, has been a problematic taxon because its generic assignation has been questioned in different works. Besides, recent phylogenetic analyses have also failed to recover the putative congeneric sister-group relationship between ‘A.’ rionegrensis and A. morricei (the type species). In this contribution, we re-describe ‘A.’ rionegrensis, evaluate its phylogenetic position and provide a taxonomic review of Aulophyseter. A detailed morphological comparison between ‘A.’ rionegrensis and A. morricei reveals several anatomical differences between them. Phylogenetic analyses recover ‘A.’ rionegrensis as a crown physeteroid, nested within Physeteridae, but not closely related to A. morricei. We provide the new generic name Cozzuoliphyseter gen. nov. for its reception. A preliminary re-assessment of material previously referred to Aulophyseter indicates that A. mediatlanticus, and also historical material of A. morricei, need to be reviewed.


Zootaxa ◽  
2021 ◽  
Vol 5071 (3) ◽  
pp. 369-383
Author(s):  
BEN THUY ◽  
VIVIENNE MAXWELL ◽  
SARA B. PRUSS

The Lower Triassic fossil record of brittle stars is relatively rich, yet most records published to date are based on poorly preserved or insufficiently known fossils. This hampers exhaustive morphological analyses, comparison with recent relatives or inclusion of Early Triassic ophiuroid taxa in phylogenetic estimates. Here, we describe a new ophiuroid from the Lower Triassic of Nevada, preserved as phosphatized skeletal parts and assigned to the new taxon Ophiosuperstes praeparvus gen. et sp. nov Maxwell, V. & Pruss. S.B. This unusual preservation of the fossils allowed for acid-extraction of an entire suite of dissociated skeletal parts, including lateral arm plates, ventral arm plates, vertebrae and various disk plates, thus unlocking sufficient morphological information to explore the phylogenetic position of the new taxon. Bayesian phylogenetic inference suggests a basalmost position of O. praeparvus within the Ophintegrida, sister to all other sampled members of that superorder. The existence of coeval but more derived ophiuroids suggests that O. praeparvus probably represents a member of a more ancient stem ophintegrid group persisting into the Early Triassic.  


Sign in / Sign up

Export Citation Format

Share Document