Paraphyly of Chinese Amolops (Anura, Ranidae) and phylogenetic position of the rare Chinese frog, Amolops tormotus

Zootaxa ◽  
2007 ◽  
Vol 1531 (1) ◽  
pp. 49-55 ◽  
Author(s):  
HONG-XIA CAI ◽  
JING CHE ◽  
JUN-FENG PANG ◽  
ER-MI ZHAO ◽  
YA-PING ZHANG

In order to evaluate the five species groups of Chinese Amolops based on morphological characteristics, and to clarify the phylogenetic position of the concave-eared torrent frog Amolops tormotus, we investigated the phylogeny of Amolops by maximum parsimony, Bayesian Inference, and maximum likelihood methods using two mitochondrial DNA fragments (12S rRNA, 16S rRNA). Our results supported a sister group relationship of Amolops ricketti and Amolops hainanensis. However, the grouping of Amolops mantzorum and Amolops monticola needs to be resolved with more data. Amolops tormotus was nested in genus Odorrana. Thus, recognition of the A. tormotus group is unwarranted and A. tormotus should be referred to genus Odorrana as O. tormota. This species is the sister group of O. nasica plus O. versabilis. The new classification implies that the genus Wurana is to be considered as junior subjective synonym of Odorrana.

Zootaxa ◽  
2021 ◽  
Vol 5072 (6) ◽  
pp. 560-574
Author(s):  
WU HAN ◽  
JIE LIU ◽  
YIFAN LUO ◽  
HONGQU TANG

Kribiodosis Kieffer, 1921, an African genus of Chironomini (Diptera: Chironomidae), is newly recorded from the Oriental region through a new species K. cantonensis sp. n. Detailed descriptions of the male, female and a DNA barcode are provided. With the inclusion of the new species bearing scutal tubercle and fused tibial comb, the generic diagnosis needs revision and expansion. The phylogenetic position of Kribiodosis within the tribe Chironomini is explored based on five concatenated genetic makers (18S, 28S, CAD1, CAD4 and COI-3P) using both mixed-model Bayesian inference and maximum likelihood methods. Kribiodosis is placed as a core member of the Microtendipes group but its precise sister group remains unclear. Inclusion of the analysis of Nilodosis Kieffer, another Chironomini genus with an African-Oriental distribution, reveals an unexpected robust position as sister to a large and diverse inclusive group of many Chironomini.  


1992 ◽  
Vol 335 (1274) ◽  
pp. 207-219 ◽  

Sphenodon has traditionally been regarded as a little changed survivor of the Permo-Triassic thecodont or eosuchian ‘stem reptiles’ but has alternatively been placed in the Lepidosauria as the plesiomorphic or even apomorphic sister-taxon of the squamates. A cladistic analysis of 16 characters from spermatozoal ultrastructure of Sphenodon and other amniotes unequivocally confirms its exceedingly primitive status. The analysis suggests that monotremes are the sister-group of birds; squamates form the sister-group of a bird + monotreme clade while the three sister-groups successively below the bird + monotreme + squa- mate assemblage are the caiman, the tuatara and the outgroup (turtles). The monotreme + bird couplet, supports the concept of the Haemothermia, but can only be regarded heuristically. The usual concept of mammals as a synapsid-derived outgroup of all other extant amniotes is not substantiated spermatologically. All cladistic analyses made, and a separate consideration of apomorphies, indicate that Sphenodon is spermatologically the most primitive amniote, excepting the Chelonia. It is advanced (apomorphic) for the amniotes in only two of the 16 spermatozoal characters considered. A close, sister-group relationship of Sphenodon with squamates is not endorsed.


2006 ◽  
Vol 37 (4) ◽  
pp. 419-432 ◽  
Author(s):  
Mariano Michat

AbstractThe phylogenetic position of Hydrovatus Motschulsky was investigated based on a cladistic analysis of 18 hydroporine taxa and 69 characters from larval morphology. For this purpose, the three larval instars of H. caraibus Sharp were described and illustrated for the first time, emphasizing the morphometry and chaetotaxy. The resulting cladogram supported a sister-group relationship of the tribes Hydrovatini and Hyphydrini, based on three unambiguous synapomorphies: the absence of pore ANh, the proximal insertion of seta LA8, and the abdominal segment VI sclerotized ventrally. The strong development of seta AB5 and the absence of pore PAj are other two potential synapomorphies for this clade. The tribe Vatellini was resolved as more closely related to members of Hydroporini than to Hyphydrini. However, the support obtained for this relationship was weak, since no unambiguous synapomorphies were discovered. Larvae of H. caraibus are characteristic within Hydroporinae in the absence of an occipital suture, the presence of a galea (secondarily derived according to this study), and the absence of setae LA3 and UR8 and pores PAm and PAo. First instar larva is also unique in that the egg bursters are basally placed on the frontoclypeus and the claws bear ventral spinulae on basal half.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1875
Author(s):  
Ran Li ◽  
Zhenxing Ma ◽  
Changfa Zhou

Mayflies of the family Neoephemeridae are widespread in the Holarctic and Oriental regions, and its phylogenetic position is still unstable in the group Furcatergalia (mayflies with fringed gills). In the present study, we determined the complete mitogenomes of two species, namely Potamanthellus edmundsi and Pulchephemera projecta, of this family. The lengths of two mitogenomes were 15,274 bp and 16,031 bp with an A + T content of 73.38% and 73.07%, respectively. Two neoephemerid mitogenomes had a similar gene size, base composition, and codon usage of protein-coding genes (PCGs), and the sequenced gene arrangements were consistent with the putative ancestral insect mitogenomes as understood today. The most variable gene of Furcatergalia mitogenomes was ND2, while the most conserved gene was COI. Meanwhile, the analysis of selection pressures showed that ND6 and ATP8 exhibited a relaxed purifying selection, and COI was under the strongest purifying selection. Phylogenetic trees reconstructed based on two concatenated nucleotide datasets using both maximum likelihood (ML) and Bayesian inference (BI) estimations yielded robust identical topologies. These results corroborated the monophyly of seven studied families and supported the family Leptophlebiidae as being of the basal lineage of Furcatergalia. Additionally, the sister-group relationship of Caenidae and Neoephemeridae was well supported. Methodologically, our present study provides a general reference for future phylogenetic studies of Ephemeroptera at the mitogenome level.


2003 ◽  
Vol 40 (4) ◽  
pp. 527-556 ◽  
Author(s):  
Michael deBraga

A morphological study of the postcranial skeleton of Procolophon trigoniceps from the Lower Triassic of South Africa and Antarctica is undertaken. Procolophon shares a sister-group relationship with the procolophonid Tichvinskia from the Lower Triassic of Russia and is a basal member of Procolophonidae. This clade also includes the enigmatic taxon Sclerosaurus, believed most recently to be a pareiasaur relative. Owenettids form a separate lineage from Procolophonidae and are predominantly restricted to the Permian of both South Africa and Madagascar. A phylogenetically based assessment is considered, in which specialized modern taxa (sand lizards) are compared to their nonfossorial sister clade, allowing for "key innovations" to be identified. A similar comparison between owenettids and procolophonids reveals a number of apparent "key innovations" within procolophonids that are suggestive of a burrowing lifestyle for Procolophon.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 779 ◽  
Author(s):  
Ke-Ke Xu ◽  
Qing-Ping Chen ◽  
Sam Pedro Galilee Ayivi ◽  
Jia-Yin Guan ◽  
Kenneth B. Storey ◽  
...  

Insects of the order Phasmatodea are mainly distributed in the tropics and subtropics and are best known for their remarkable camouflage as plants. In this study, we sequenced three complete mitochondrial genomes from three different families: Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis. The lengths of the three mitochondrial genomes were 15,896 bp, 16,869 bp, and 17,005 bp, respectively, and the gene composition and structure of the three stick insects were identical to those of the most recent common ancestor of insects. The phylogenetic relationships among stick insects have been chaotic for a long time. In order to discuss the intra- and inter-ordinal relationship of Phasmatodea, we used the 13 protein-coding genes (PCGs) of 85 species for maximum likelihood (ML) and Bayesian inference (BI) analyses. Results showed that the internal topological structure of Phasmatodea had a few differences in both ML and BI trees and long-branch attraction (LBA) appeared between Embioptera and Zoraptera, which led to a non-monophyletic Phasmatodea. Consequently, after removal of the Embioptera and Zoraptera species, we re-performed ML and BI analyses with the remaining 81 species, which showed identical topology except for the position of Tectarchus ovobessus (Phasmatodea). We recovered the monophyly of Phasmatodea and the sister-group relationship between Phasmatodea and Mantophasmatodea. Our analyses also recovered the monophyly of Heteropterygidae and the paraphyly of Diapheromeridae, Phasmatidae, Lonchodidae, Lonchodinae, and Clitumninae. In this study, Peruphasma schultei (Pseudophasmatidae), Phraortes sp. YW-2014 (Lonchodidae), and species of Diapheromeridae clustered into the clade of Phasmatidae. Within Heteropterygidae, O. guangxiensis was the sister clade to O. mouhotii belonging to Dataminae, and the relationship of (Heteropteryginae + (Dataminae + Obriminae)) was recovered.


Zootaxa ◽  
2019 ◽  
Vol 4674 (3) ◽  
pp. 375-385
Author(s):  
EDUARDO DOMÍNGUEZ ◽  
MARÍA GABRIELA CUEZZO ◽  
SIMÓN CLAVIER

Four of the 43 genera of South American Leptophlebiidae are dipterous. A previous phylogenetic hypothesis supported that clade Askola+Hagenulopsis, and that Bessierus+Perissophlebiodes, are sister groups of the Farrodes complex. Adults of Bessierus and Perissophlebiodes were not known but posteriorly Perissophlebiodes male imago was described. Here, we describe the male imago of Bessierus for the first time. Both genera share, besides the absence of the hind wings, the asymmetrical fork of MA, symmetrical fork of MP, dissimilar tarsal claws, and forceps sockets fused. Along with the description of the imago, a new diagnosis for the genus Bessierus is presented, also updating the identification key with this new information. A new cladistics analysis is performed to test the stability of the proposed relationships of these four genera within Leptophlebiidae. We obtained a single cladistic hypothesis where the addition of Bessierus adult characters resulted in new synapomorphies for the (Bessierus, Perissophlebiodes) clade, and improved its clade statistical support. The fused forceps sockets resulted in a synapomorphy uniting Bessierus, Perissophlebiodes and Simothraulopsis. As a result of this new analysis, the hypothesis of independent losses of the hind wings in the two dipterous groups studied is supported. The Farrodes lineage is not supported as proposed in previous studies, being restricted only to (Farrodes (Simothraulopsis, Homothraulus)) while the identity of “Perissophlebiodes lineage” is supported. The sister group relationship of Rondophlebia is not clearly defined. 


Parasitology ◽  
2020 ◽  
Vol 147 (10) ◽  
pp. 1149-1157 ◽  
Author(s):  
Nehaz Muhammad ◽  
Suleman ◽  
Munawar Saleem Ahmad ◽  
Liang Li ◽  
Qing Zhao ◽  
...  

AbstractOur present genetic data of Acanthocephala, especially the mitochondrial (mt) genomes, remains very limited. In the present study, the nearly complete mt genome sequences of Sphaerirostris lanceoides (Petrochenko, 1949) was sequenced and determined for the first time based on specimens collected from the Indian pond heron Ardeola grayii (Sykes) (Ciconiiformes: Ardeidae) in Pakistan. The mt genome of S. lanceoides is 13 478 bp in size and contains 36 genes, including 12 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs) and two ribosomal RNA genes (rRNAs). Moreover, in order to clarify the phylogenetic relationship of the genera Centrorhynchus and Sphaerirostris, and to test the systematic position of S. lanceoides in the Centrorhynchidae, the phylogenetic analyses were performed using Bayesian inference and maximum likelihood methods, based on concatenated nucleotide sequences of 12 PCGs, rRNAs and tRNAs. The phylogenetic results further confirmed the monophyly of the order Polymorphida and the paraphyly of the order Echinorhynchida in the class Palaeacanthocephala. Our results also challenged the validity of the genus Sphaerirostris (Polymorphida: Centrorhynchidae) and showed a sister relationship between S. lanceoides and S. picae (Rudolphi, 1819).


2008 ◽  
Vol 276 (1655) ◽  
pp. 239-245 ◽  
Author(s):  
Moriya Ohkuma ◽  
Satoko Noda ◽  
Yuichi Hongoh ◽  
Christine A Nalepa ◽  
Tetsushi Inoue

Cryptocercus cockroaches and lower termites harbour obligate, diverse and unique symbiotic cellulolytic flagellates in their hindgut that are considered critical in the development of social behaviour in their hosts. However, there has been controversy concerning the origin of these symbiotic flagellates. Here, molecular sequences encoding small subunit rRNA and glyceraldehyde-3-phosphate dehydrogenase were identified in the symbiotic flagellates of the order Trichonymphida (phylum Parabasalia) in the gut of Cryptocercus punctulatus and compared phylogenetically to the corresponding species in termites. In each of the monophyletic lineages that represent family-level groups in Trichonymphida, the symbionts of Cryptocercus were robustly sister to those of termites. Together with the recent evidence for the sister-group relationship of the host insects, this first comprehensive study comparing symbiont molecular phylogeny strongly suggests that a set of symbiotic flagellates representative of extant diversity was already established in an ancestor common to Cryptocercus and termites, was vertically transmitted to their offspring, and subsequently became diversified to distinct levels, depending on both the host and the symbiont lineages.


Zootaxa ◽  
2005 ◽  
Vol 891 (1) ◽  
pp. 1 ◽  
Author(s):  
Magdalena Szarowska ◽  
Andrzej Falniowski ◽  
FRANK Riedel ◽  
Thomas Wilke

The phylogenetic position of the subfamily Pyrgulinae within the superfamily Rissooidea has been discussed very controversially. Different data sets not only led to different evolutionary scenarios but also to different systematic classifications of the taxon. The present study uses detailed anatomical data for two pyrgulinid taxa, the type species of the subfamily, Pyrgula annulata (Linnaeus, 1767), and the type species of the little known genus Dianella, D. thiesseana (Kobelt, 1878), as well as DNA sequencing data of three gene fragments from representatives of eight rissooidean families to A) infer the phylogenetic position of Pyrgulinae with emphasis on its relationships within the family Hydrobiidae, B) to study the degree of concordance between anatomyand DNAbased phylogenies and C) to trace the evolution of anatomical characters along a multi-gene molecular phylogeny to find the anatomical characters that might be informative for future cladistic analyses. Both anatomical and molecular data sets indicate either a very close or even sister-group relationship of Pyrgulinae and Hydrobiinae. However, there are major conflicts between the two data sets on and above the family level. Notably, Hydrobiidae is not monophyletic in the anatomical analysis. The reconstruction of anatomical character evolution indicates that many of the characters on which the European hydrobioid taxonomy is primarily based upon are problematic. The inability to clearly separate some hydrobiids from other distinct families based on those characters might explain why until only a few years ago, "Hydrobiidae" was a collecting box for numerous rissooidean taxa (mostly species with shells small and lacking any characteristic features). The present study not only stresses the need for comprehensive molecular studies of rissooidean taxa, it also demonstrates that much of the problems surrounding anatomical analyses in rissooidean taxa are due to the lack of comprehensive data for many representatives. In order to aid future comparativeanatomical studies and a better understanding of character evolution in the species-rich family Hydrobiidae, detailed anatomical descriptions for P. annulata and D. thiesseana are provided.Key words: Pyrgulinae, Pyrgula, Dianella, Hydrobiidae, phylogeny, DNA, anatomy, Greece


Sign in / Sign up

Export Citation Format

Share Document