Infidélité paléomagnétique observée dans une formation lacustre varvée quaternaire dite: "argiles d'Eybens" (Grenoble, France)

1982 ◽  
Vol 19 (6) ◽  
pp. 1196-1217 ◽  
Author(s):  
Daniel Biquand

We have investigated the properties of natural magnetization of a lacustrine interglacial Riss–Würm deposit near Grenoble (France). Made up of accumulated argillite 250 m thick, this deposit comprises annual varves with an average thickness of 0.5 cm.The magnetic viscosity of this sediment is not very high, and we have demonstrated that the characteristic magnetization, measured after a moderate thermal treatment (between 160 and 220 °C) followed by alternating field demagnetization with maximum intensity at 200 Oe (15.9 × 103 A/m), is possibly a detrital magnetization carried by the magnetite (thermomagnetic and strong continuous field studies).On a local scale (area of about 100 m2), the direction of this magnetization remains very homogeneous within each horizon; sampling restricted to about 10 sites 1 m apart indicates for each level a mean direction of magnetization with a high accuracy: α95 = 1–2°, k = 500–2500. The aveage direction calculated by this method for different levels indicates significant stratigraphic variations (attaining an inclination of 20° and a declination of 50°), which are reached rapidly (from 1 to few degrees per year). Such variations cannot be reasonably attributed to changes in the directions of the Earth's magnetic field.A study of the acquired anisotropy of the thermal remanent magnetization indicates a magnetic anisotropy that is related to the lithological structure of the sediment and shows a strong intensity: the maximum divergence between the field direction and the acquired thermal remanent magnetization direction in this field varies, with individual samples, between 9 and 50°. The study of the properties of this anistotropy demonstrates the "infidelity" of the detrital magnetization: for one of the small vertical sequences studied for anisotropy the characteristic magnetization of a specified level has a direction nearer the axial direction of easy magnetization when the anisotropic intensity is large. This infidelity may be caused by different factors influencing the deposition of the sediment, particularly the variable directions of water flows determining the particle orientation. [Journal Translation]

2019 ◽  
Vol 5 (5) ◽  
pp. 581-596

Technology plays a crucial role in the self-guided learning of a second language in general and English in particular. Nevertheless, many students in different contexts still ignore the application of technology-enhanced language learning (TELL) tools in enhancing their foreign language proficiency. Therefore, this study is conducted to investigate the attitudes towards the use of TELL tools in English-language learning (ELL) among English majors at one university in Vietnam. To collect data, 197 English majors participated in finishing the questionnaire, and 20 students were invited to join the interviews. The findings are that the majority of students have positive attitudes towards the use of TELL tools and the frequency of using these tools is very high. In addition, the results also reveal that there is no significant difference in attitudes towards and frequency of using TELL tools in learning English in terms of the year of study. However, students of different levels of academic achievements have different attitudes towards using TELL tools and use TELL tools to learn English differently. Received 2nd May 2019; Revised 16th July 2019, Accepted 20th October 2019


MRS Bulletin ◽  
1999 ◽  
Vol 24 (1) ◽  
pp. 41-45 ◽  
Author(s):  
M.E. Dávila ◽  
D. Arvanitis ◽  
J. Hunter Dunn ◽  
N. Mårtensson ◽  
P. Srivastava ◽  
...  

Circularly polarized x-ray radiation is attracting increasing interest as a tool for the characterization of the electronic, magnetic, and chiral properties of low-dimensional structures. Using circular light (with electric field vector parallel to the orbital plane), a dependence of the measured quantity by changing either the orientation of the light polarization or the magnetization is indicative of the existence of magnetic circular dichroism. It can be observed in x-ray absorption spectroscopy (XAS), in which the photon energy is scanned through an absorption threshold exciting a core electron into an unoccupied valence state using circularly polarized light. Synchrotron radiation sources have made this technique possible. It can also be observed in photo-emission spectroscopy from core and valence levels. Here we focus on magnetic circular x-ray dichroism (MCXD) in XAS as an element-specific tool to investigate magnetic properties of ultrathin films in situ. The application of magneto-optical sum rules enables the determination of the orbital and spin magnetic moments per atom from XAS spectra, as well as the easy magnetization direction.MCXD-based magnetometry in XAS is extensively used by measuring the L absorption edges of 3d-transition metals, where large intensity changes (up to 60%) of the L-edge white lines are observed upon reversal of either the sample magnetization or the light helicity. The high magnetic contrast obtained, combined with the elemental specificity of the technique, allows for the study of very dilute samples such as ultrathin films. We first concentrate on the selection rules governing MCXD in XAS.


1988 ◽  
Vol 2 (1) ◽  
pp. 191-202 ◽  
Author(s):  
Richard H Thaler

Next time that you find yourself a little short of cash for lunch, try the following experiment in your class. Take a jar and fill it with coins, noting the total value of the coins. Now auction off the jar to your class (offering to pay the winning bidder in bills to control for penny aversion). Chances are very high that the following results will be obtained: (1) the average bid will be significantly less than the value of the coins (bidders are risk averse); (2) the winning bid will exceed the value of the jar. Therefore, you will have money for lunch, and your students will have learned first-hand about the “winner's curse.” The winner's curse cannot occur if all the bidders are rational, so evidence of a winner's curse in market settings would constitute an anomaly. However, acting rationally in a common value auction can be difficult. Solving for the optimal bid is not trivial. Thus, it is an empirical question whether bidders in various contexts get it right or are cursed. I will present some evidence, both from experimental and field studies, suggesting that the winner's curse may be a common phenomenon.


2005 ◽  
Vol 475-479 ◽  
pp. 3757-3760
Author(s):  
Hong Chuan Jiang ◽  
Wan Li Zhang ◽  
Bin Peng ◽  
Wen Xu Zhang ◽  
Shi Qing Yang

In this paper, the influences of depositing angles on TbFe film magnetic and magnetostrictive characteristics were discussed. TbFe films were deposited by DC magnetron sputtering. With the decrease of depositing angles from 900 to 150, TbFe film in-plane magnetization measured at 1600kA.m-1 external field is greatly increased. With the decrease of depositing angles from 900 to 150, the magnetostrictive saturation field is decreased. TbFe film in-plane magnetostriction is improved when depositing angles are changed from 900 to 150. Magnetic domain structures detected by MFM indicates that film easy magnetization direction is gradually changed from perpendicular to parallel with the decrease of depositing angles. The variation of film magnetic and magnetostrictive performances can be explained by the oblique anisotropy associated with columnar grain morphology of the films.


Author(s):  
Vijay A. Neelakantan ◽  
Gregory N. Washington

The property of magnetorheological fluids to change their yield stress depending on applied magnetic fields can be employed to develop many controllable devices one of them being MR fluid based clutches. One major problem however with MR fluid based clutches is that at high rotational speeds, the iron/ferrous particles in the MR fluid centrifuge due to very high centrifugal forces. Thus the particles move outward as the speed increases thereby making the fluid non-homogeneous. Many times however the initial analysis assumes fluid homogeneity, which is really not the case. In this paper this problem is addressed by assuming various volume fraction profiles describing the fluid particle orientation. Two cases, one with a linear profile and the other with an exponential profile are discussed. Expressions for the torque transmitted are derived at for both disc shaped and cylindrical shaped clutches. In addition, the use of a MR sponge based clutch that may indeed reduce the effect of centrifugal forces significantly is described. The design methodology and configuration for the sponge clutch are also discussed. An experimental set up used to test the clutch is also described.


2009 ◽  
Vol 46 (9) ◽  
pp. 675-687 ◽  
Author(s):  
D. T.A. Symons ◽  
T. E. Smith ◽  
K. Kawasaki ◽  
M. J. Walawender

Pegmatite dikes in the Peninsular Ranges batholith of southwestern California have produced spectacular crystals of semiprecious and precious minerals for over a century. Aside from their economic importance, these dikes straddle a major tectonic boundary and were used to test hypotheses related to the timing and development of this composite batholith. Paleomagnetic analysis of 252 specimens from 20 sites (12 and 8 sites in the western and eastern zones of the batholith, respectively, from 11 mines in five dike districts) isolated a stable characteristic remanent magnetization direction at 19 sites. The site mean directions for the western and eastern zones are statistically indistinguishable at 95% confidence, supporting petrologic and geochemical arguments that the dikes of the two zones are coeval and cogenetic. After correction for the Neogene opening of the Gulf of California, the paleopole for all 19 site mean directions is indistinguishable from the 94 Ma reference paleopole for North America and supports hypotheses that (1) the dikes are genetically related to intrusion of the La Posta-type plutons; (2) the batholith was already assembled beside the northwestern coastline of Mexico at 94 Ma; (3) ENE-side-up tilting of fault blocks in the batholith’s western zone ended by ∼94 Ma; and (4) the far-sided and clockwise-rotated discordant paleopoles found commonly in Late Cretaceous and younger sedimentary rocks of the batholith’s region are mostly the result of inclination-flattening of the remanence and (or) remagnetization by fluid flow, creating a secondary remanence, excluding Neogene tectonic rotations.


Author(s):  
Daisuke Shimbara ◽  
Motoshi Saeki ◽  
Shinpei Hayashi ◽  
Øystein Haugen

Problem: Modern systems contain parts that are themselves systems. Such complex systems thus have sets of subsystems that have their own variability. These subsystems contribute to the functionality of a whole system-of-systems (SoS). Such systems have a very high degree of variability. Therefore, a modeling technique for the variability of an entire SoS is required to express two different levels of variability: variability of the SoS as a whole and variability of subsystems. If these levels are described together, the model becomes hard to understand. When the variability model of the SoS is described separately, each variability model is represented by a tree structure and these models are combined in a further tree structure. For each node in a variability model, a quantity is assigned to express the multiplicity of its instances per one instance of its parent node. Quantities of the whole system may refer to the number of subsystem instances in the system. From the viewpoint of the entire system, constraints and requirements written in natural language are often ambiguous regarding the quantities of subsystems. Such ambiguous constraints and requirements may lead to misunderstandings or conflicts in an SoS configuration. Approach: A separate notion is proposed for variability of an SoS; one model considers the SoS as an undivided entity, while the other considers it as a combination of subsystems. Moreover, a domain-specific notation is proposed to express relationships among the variability properties of systems, to solve the ambiguity of quantities and establish the total validity. This notation adapts an approach, named Pincer Movement, which can then be used to automatically deduce the quantities for the constraints and requirements. Validation: The descriptive capability of the proposed notation was validated with four examples of cloud providers. In addition, the proposed method and description tool were validated through a simple experiment on describing variability models with real practitioners.


2021 ◽  
Author(s):  
Daniel Buczko ◽  
Magdalena Matusiak-Małek ◽  
Jarosław Majka ◽  
Iwona Klonowska ◽  
Grzegorz Ziemniak

<p>The Scandinavian Caledonides comprise numerous ultramafic bodies emplaced within metamorphic nappe complexes. A hypothetical suture between the most distal crustal units representing Baltican margin (Seve Nappe Complex, SNC) with the oceanic Iapetian terranes (Köli Nappe Complex) is abundant in such occurrences. Here we present preliminary data on garnet/spinel peridotites/pyroxenites from SNC in central and northern parts of Swedish Jämtland county. The presented results are a part of a project involving regional study focused on orogenic peridotites (mostly spinel-bearing) of Seve and Köli nappe complexes. </p><p>The ultramafic bodies in the study area range from a meters to kilometer scale and comprise: 1) garnet peridotites, 2) spinel peridotites, 3) spinel pyroxenites and 4) garnet pyroxenites. Individual outcrops often record different levels of serpentinisation. </p><p>The Grt-peridotites are usually harzburgites (sparsely dunites/lherzolites) with an assemblage of Ol+Opx+Cpx+Amph+Grt+Spl.  Minerals within the Grt-peridotites are characterised by Ol Fo=~90-91 and Mg# in pyroxenes 90-92 and 92-96 (enstatite and diopside/Cr-diopside, respectively). Garnet is pyrope with end-members Prp=60-69%, Usp=0-4% and Cr#=0.5-4. Amphibole (pargasite; Mg#=88-92) typically occurs as patches or rims around Grt and often host significant amounts of Spl. The spinel has an intermediate composition between hercynite-spinel and magnesiochromite-chromite (Cr#=41-55, Mg#=40-57). </p><p>The spinel peridotites are formed of Ol+Opx+Amph+Chl+Spl and classify mostly as harzburgites/dunites. Olivine and Opx (enstatite, rarely Cr-enstatite; often as porphyrocrysts) show a high range of Fo/Mg# values (90-95 and 90-94, respectively). Amphibole (tremolite; Mg#=91-96) is usually evenly distributed within the rock, while Chl is often associated with grain boundaries. Spinel has a chromite composition (Cr#=82-100, Mg#=5-10). Within single large (~0.5mm) spinel grains, cores with higher Mg# (~23) and lower Cr# (~82) can be observed.</p><p>The garnet pyroxenites are websterites characterised by lower Mg# (88-90) in enstatite, presence of Al-diopside and lower Cr# (<0.5) in pyrope than in peridotites. The Spl-pyroxenites are orthopyroxenites with Mg# in enstatite (86-88) lower than in peridotitic orthopyroxene.</p><p>The presented preliminary data suggest that lithologies formed under different pressures (i.e. Grt and Spl facies) and must have recorded different evolution paths. Garnet ultramafics mineralogy resembles typical “mantle” assemblage with Prg suggesting possible metamorphic input also for other consisting phases (similarly to M2 paragenesis described in [1]). While the Grt ultramafic rocks and their evolution has been a subject of several studies before, the Spl ultramafics are relatively understudied and can shed new light on the evolution of SNC. The composition of Spl peridotites represents a mixture of typical “magmatic” mantle phases with metamorphic minerals (Amph+Chl). Very high Mg# values and occurrence of 120° triple point junctions in Ol (also described in [2]) suggest complex genesis, which probably includes serpentinisation (+exhumation?) followed by deserpentinisation. This indicates that the Spl ultramafics of SNC might have been subducted after their primary serpentinisation, which can be related either to emplacement and exhumation of ultramafics during Rodinia breakup or derivation from shallow, serpentinised “wet” mantle wedge in the subduction zone. </p><p>Research founded by Polish National Science Centre grant no. 2019/35/N/ST10/00519.</p><p>[1] Gilio et al. (2015). Lithos 230, 1-16.<br>[2] Clos et al. (2014). Lithos 192-195, 8-20.</p>


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. J85-J98
Author(s):  
Shuang Liu ◽  
Xiangyun Hu ◽  
Dalian Zhang ◽  
Bangshun Wei ◽  
Meixia Geng ◽  
...  

Natural remanent magnetization acts as a record of the previous orientations of the earth’s magnetic field, and it is an important feature when studying geologic phenomena. The so-called IDQ curve is used to describe the relationship between the inclination ( I) and declination ( D) of remanent magnetization and the Köenigsberger ratio ( Q). Here, we construct the IDQ curve using data on ground and airborne magnetic anomalies. The curve is devised using modified approaches for estimating the total magnetization direction, e.g., identifying the maximal position of minimal reduced-to-the-pole fields or identifying correlations between total and vertical reduced-to-the-pole field gradients. The method is tested using synthetic data, and the results indicate that the IDQ curve can provide valuable information on the remanent magnetization direction based on available data on the Köenigsberger ratio. Then, the method is used to interpret field data from the Yeshan region in eastern China, where ground anomalies have been produced by igneous rocks, including diorite and basalt, which occur along with magnetite and hematite ore bodies. The IDQ curves for 24 subanomalies are constructed, and these curves indicate two main distribution clusters of remanent magnetization directions corresponding to different structural units of magma intrusion and help identify the lithologies of the magnetic sources in areas covered by Quaternary sediments. The estimated remanent magnetization directions for Cenozoic basalt are consistent with measurements made in paleomagnetism studies. The synthetic and field data indicate that the IDQ curve can be used to efficiently estimate the remanent magnetization direction from a magnetic anomaly, which could help with our understanding of geologic processes in an area.


Sign in / Sign up

Export Citation Format

Share Document