Physical Activity, Muscle, and the HSP70 Response

1998 ◽  
Vol 23 (3) ◽  
pp. 245-260 ◽  
Author(s):  
J. Lon Kilgore ◽  
Timothy I. Musch ◽  
Christopher R. Ross

Selye (1936) described how organisms react to various external stimuli (i.e., stressors). These reactions generally follow a programmed series of events and help the organism adapt to the imposed stress. The heat shock response is a common cellular reaction to external stressors, including physical activity. A characteristic set of proteins is synthesised shortly after the organism is exposed to stress. Researchers have not determined how heat shock proteins affect the exercise response. However, their role in adaptation to exercise and training might he inferred, since the synthetic patterns correlate well with the stress adaptation syndrome that Selye described. This review addresses the 70 kilodalton heat shock protein family (HSP70), the most strongly induced heat shock proteins. This paper provides an overview of the general heat shock response and a brief review of literature on HSP70 function, structure, regulation, and potential applications. Potential applications in health, exercise, and medicine are provided. Key words: heat shock, protein, exercise

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Masayu Azizah ◽  
Rostika Flora ◽  
Theodoru Theodoru

AbstrakHeat Shock Protein (HSP) merupakan suatu protein yang dihasilkan karena adanya Heat Shock Response (HSR). HSR diperlukan sebagai tanggapan sel terhadap berbagai macam gangguan, baik yang bersifat fisiologis maupun yang berasal dari lingkungan. Peningkatan kadar HSP70 otot jantung ini dikarenakan adanya aktivitas fisik anaerobik. Aktivitas fisik ini mengakibatkan tubuh mengalami peningkatan suhu tubuh, stres panas dan latihan.Tujuan penelitian ini adalah untuk menganalisa pengaruh aktivitas fisik anaerobik yang dilakukan setiap hari terhadap kadar Heat Shock Protein (HSP)70 otot jantung tikus wistar. Berdasarkan hasil penelitian, kelompok anaerobik menunjukkan peningkatan kadar HSP otot jantung dibandingkan kelompok pembanding.Kata kunci : aktivitas fisik anaerobik tiap hari, HSP70, treadmill, tikus rattus novergicus wistar.AbstractHeat Shock Protein (HSP) is a protein that is produced because of the Heat Shock Response (HSR). HSR is required as a response of cells to a variety of disorders, both physiological as well as from the environment. Increased levels of HSP70 heart muscle is due to anaerobic physical activity. Physical activity causes the body to increase body temperature, heat stress and latihan.Tujuan this study is to analyze the influence of anaerobic physical activity performed every day on levels of Heat Shock Protein (HSP) 70 wistar rat cardiac muscle. Based on the results of the study, the group showed increased levels of HSP anaerobic heart muscle than the comparison group.Keywords : anaerobic physical activity every day , HSP70 , body temperature, rattus novergicus wistar rat.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 867
Author(s):  
Anthony D. Tercero ◽  
Sean P. Place

The suborder Notothenioidae is comprised of Antarctic fishes, several of which have lost their ability to rapidly upregulate heat shock proteins in response to thermal stress, instead adopting a pattern of expression resembling constitutive genes. Given the cold-denaturing effect that sub-zero waters have on proteins, evolution in the Southern Ocean has likely selected for increased expression of molecular chaperones. These selective pressures may have also enabled retention of gene duplicates, bolstering quantitative output of cytosolic heat shock proteins (HSPs). Given that newly duplicated genes are under more relaxed selection, it is plausible that gene duplication enabled altered regulation of such highly conserved genes. To test for evidence of gene duplication, copy number of various isoforms within major heat shock gene families were characterized via qPCR and compared between the Antarctic notothen, Trematomus bernacchii, which lost the inducible heat shock response, and the non-Antarctic notothen, Notothenia angustata, which maintains an inducible heat shock response. The results indicate duplication of isoforms within the hsp70 and hsp40 super families have occurred in the genome of T. bernacchii. The findings suggest gene duplications may have been critical in maintaining protein folding efficiency in the sub-zero waters and provided an evolutionary mechanism of alternative regulation of these conserved gene families.


1991 ◽  
Vol 11 (2) ◽  
pp. 1062-1068
Author(s):  
H J Yost ◽  
S Lindquist

In the yeast Saccharomyces cerevisiae, the splicing of mRNA precursors is disrupted by a severe heat shock. Mild heat treatments prior to severe heat shock protect splicing from disruption, as was previously reported for Drosophila melanogaster. In contrast to D. melanogaster, protein synthesis during the pretreatment is not required to protect splicing in yeast cells. However, protein synthesis is required for the rapid recovery of splicing once it has been disrupted by a sudden severe heat shock. Mutations in two classes of yeast hsp genes affect the pattern of RNA splicing during the heat shock response. First, certain hsp70 mutants, which overproduce other heat shock proteins at normal temperatures, show constitutive protection of splicing at high temperatures and do not require pretreatment. Second, in hsp104 mutants, the recovery of RNA splicing after a severe heat shock is delayed compared with wild-type cells. These results indicate a greater degree of specialization in the protective functions of hsps than has previously been suspected. Some of the proteins (e.g., members of the hsp70 and hsp82 gene families) help to maintain normal cellular processes at higher temperatures. The particular function of hsp104, at least in splicing, is to facilitate recovery of the process once it has been disrupted.


2000 ◽  
Vol 278 (4) ◽  
pp. H1091-H1097 ◽  
Author(s):  
L. Sun ◽  
J. Chang ◽  
S. R. Kirchhoff ◽  
A. A. Knowlton

Heat-shock proteins (HSPs) are an important family of endogenous protective proteins, which increase in response to myocardial ischemia and other stresses. Overexpression of HSP72 is cardioprotective. We were interested in the regulation of heat-shock factor (HSF), the transcription factor for HSP genes. Previously we have observed that the inflammatory cytokine tumor necrosis factor-α increases HSP72 levels and postulated that dexamethasone might effect the heat shock response. In the adult rat cardiac myocyte we found that treatment with either low (10 μM)- or high (100 μM)-dose dexamethasone activated HSF by 2–6 h as determined by gel shift assay without evidence of cytotoxicity. Although HSF activation is a key step in expression of HSP72, this may not result in an increase in HSP72. We found that 10 μM dexamethasone increased HSP72 38%, and 100 μM dexamethasone increased HSP72 62% ( P < 0.05). HSP27 and HSP60 were unchanged. The selective increase in HSP72 was associated with protection of the cardiac myocytes from hypoxia and reoxygenation. We conclude that dexamethasone is a novel inducer of the heat shock response.


1990 ◽  
Vol 55 (1) ◽  
pp. 1-6 ◽  
Author(s):  
John M. Delaney

SummaryAn adenyl cyclase deletion mutant (cya) ofE. colifailed to exhibit a heat-shock response even after 30 min at 42 °C. Under these conditions, heat-shock protein synthesis was induced by 10 min in the wild-type strain. These results suggest that synthesis of heat-shock proteins inE. colirequires thecyagene. This hypothesis is supported by the finding that a presumptive cyclic AMP receptor protein (CRP) binding site exists within the promotor region of theE. coli htp Rgene. In spite of the absence of heat-shock protein synthesis, when treated at 50 °C, thecyamutant is relatively more heat resistant than wild type. Furthermore, when heat shocked at 42 °C prior to exposure at 50 °C, thecyamutant developed thermotolerance. These results suggest that heat-shock protein synthesis is not essential for development of thermotolerance inE. coli.


1988 ◽  
Vol 34 (10) ◽  
pp. 1148-1153 ◽  
Author(s):  
Michael W. Lema ◽  
Arnold Brown ◽  
Charles A. Butler ◽  
Paul S. Hoffman

The heat-shock response of Legionella pneumophila was examined by radiolabelling bacterial cell proteins with [35S]methionine following a temperature shift from 30 to 42 °C. Five heat-shock proteins were identified as having molecular masses of 17, 60, 70, 78, and 85 kilodaltons (kDa). The 85- and 60-kDa proteins were equally distributed between supernatant and pellet fractions following ultracentrifugation at 100 000 × g, the 70- and 78-kDa proteins were found primarily in the supernatant, and the 17-kDa protein was found primarily in the pellet. Synthesis of subsets of the heat-shock proteins could be stimulated by novobiocin, patulin, or puromycin. Ethanol, an effector of the heat-shock response in other microorganisms, had little effect on L. pneumophila, even at the highest concentration tolerated by the bacterial cells (1.9%). Finally, the 60-kDa heat-shock protein of L. pneumophila was immunologically cross-reactive with a polyclonal antibody prepared to the Escherichia coli groEL protein. However, a mouse monoclonal antibody reactive with the 60-kDa protein of all legionellae tested did not cross-react with the E. coli groEL protein, suggesting that the Legionella 60-kDa protein contains common and unique epitopes.


1989 ◽  
Vol 67 (2-3) ◽  
pp. 113-120 ◽  
Author(s):  
Daryl J. Somers ◽  
W. Raymond Cummins ◽  
W. Gary Filion

Spinach (Spinacia oleracea L. cultivar Longstanding Bloomsdale) grown at 20 °C was subjected to a range of rapid thermal shifts as high as 42 °C. There was a decrease in the level of protein synthesis following heat-shock treatments above 34 °C as indicated by the level of incorporation of L-[35S]methionine. In vivo labelled polypeptides and in vitro translation products of RNA isolated from leaf tissue and analyzed using one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography, indicated that the temperature of induction of all 15 heat-shock proteins in the 20 °C grown plants was 36 °C. In addition, heat-shock RNA was coordinately expressed and the translation of heat-shock proteins was noncoordinate with respect to temperature. Treatment with cycloheximide and with chloramphenicol demonstrated that heat-shock protein synthesis in spinach was restricted to cytosolic ribosomes. Synthesis of some low molecular weight heat-shock proteins were insensitive to actinomycin D, suggesting greater stability of these heat-shock RNAs. The heat-shock polypeptide profile of plants grown at 10 °C was similar to that of plants grown at 20 °C, with 14 heat-shock proteins being induced at 36 °C. The growth temperature did not influence the final array of heat-shock proteins synthesized nor alter the temperature of induction of the heat-shock response.Key words: heat-shock response, heat-shock proteins, Spinacia oleracea.


Sign in / Sign up

Export Citation Format

Share Document