Influence of effective parameters of non-orthogonal smeared crack approach in seismic response of concrete arch dams

2003 ◽  
Vol 30 (5) ◽  
pp. 890-901 ◽  
Author(s):  
Radin Espandar ◽  
Vahid Lotfi ◽  
Ghani Razaqpur

A rigorous and relatively efficient algorithm based on the non-orthogonal smeared crack approach is coded in a special finite element program to study the seismic response of arch dams. The formulation is briefly presented. The 130 m high Shahid Rajaee arch dam in Iran subjected to the Friuli-Tolmezzo earthquake is selected to present a practical application of the technique. Under the same geometry and loading conditions, six nonlinear analyses with different parameters are performed, and the results are compared with each other and a linear case. The varied parameters include secant and elastic unloading–reloading options, threshold angle, and tensile strength of the material. It is concluded that the non-orthogonal smeared crack approach can redistribute the state of stresses and produces a more realistic profile of stresses in the dam. A drift in the crest displacements forms the prominent characteristics of the cracking behavior. The results also suggest that the dam can suffer significant cracking during a strong earthquake and still remain stable. Moreover, the influences of the mentioned parameters in the seismic response of the dam are comprehensively discussed.Key words: nonlinear dynamic analysis, concrete arch dam, smeared crack approach.

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Mohammad Reza Pouya ◽  
Morteza Sohrabi-Gilani ◽  
Mohsen Ghaemian

AbstractRecorded ground accelerations at various locations of Karun III Dam during November 20, 2007, were recorded by an array of accelerometers located on the dam. In terms of amplitude and phase, these accelerations show non-uniformities in different elevations. In this paper, the effect of these non-uniform ground motions on the seismic response of the dam taking dam-reservoir-foundation interaction into account is investigated. The EACD-3D-2008 finite element program and ABAQUS Software are used for carrying out the seismic analyses. For this purpose, time histories of the earthquake accelerations are interpolated at nodal points located on the dam foundation interface. The analysis has been repeated, considering the common assumption of uniform ground motions. Comparing the results obtained from these two analyses reveals that the computed displacements in the crest due to the spatially varying excitations are in more conformity with the recorded information. Moreover, neglecting the non-uniform nature of ground motions in the model leads to underestimating the tensile stress values within the dam body.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengshan Guo ◽  
Jianxin Liao ◽  
Hailong Huang ◽  
Hui Liang ◽  
Deyu Li ◽  
...  

The contraction joints of arch dams with and without shear keys are simplified to be with no-slip condition and with relative sliding condition, respectively. Based on the Lagrange multiplier method, a contact model considering the manner of independent cantilever dead load type with no-slip condition and relative sliding condition is proposed to model the nonlinearities of vertical contraction joins, which is special to the nonlinear analysis of arch dams considering the manner of dead load type. Different from the conventional Gauss iterative method, the strategy of the alternating iterative solution of normal force and tangential force is employed. The parallelization based on overlapping domain decomposition method (ODDM) and explicit message passing using distributed memory parallel computers is employed to improve the computational efficiency. An existing high arch dam with fine finite element model is analyzed to investigate the effect of shear sliding of vertical joints on seismic response of the arch dam. The result shows that the values of maximum principal tensile stress under relative sliding condition are significantly greater than those under no-slip condition.


2011 ◽  
Vol 255-260 ◽  
pp. 1167-1170
Author(s):  
Feng Miao ◽  
Wang Bo ◽  
Guan Ping

Based on scheme of Dalian gulf cross-sea bridge, in this paper, a 3-dimensional FE model for Self-anchored cable-stayed suspension bridge is established with finite element program and pile-soil-structure interaction is simulated by use of the equivalent embed fixation model. Based on the FE model, model analysis is carried out and the effects of pile-soil-structure interaction on dynamic behavior of long-span self-anchored cable-stayed suspension bridge are specially studied. The seismic response analysis result considering that pile-soil-structure interaction was compared with that of without considering such interaction. The analysis result show that interaction extend the nature period of structure, has the greatest impact to the first vibration mode; meanwhile, enlarged longitudinal displacement and moment of stiffening beam in middle of main span, longitudinal displacement on top of tower and axial force at bottom, but reduced the moment of tower at bottom. The research results provide some theoretical foundation to composite structure system.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Xu ◽  
Shuaizhao Jing ◽  
Jie Liu ◽  
Yefei Huang

The cracking behavior and failure mode of a 78 m high concrete double-curvature arch dam with weak upper abutment are investigated through performing cracking analysis. The mechanical behavior of concrete is simulated using a smeared crack model, in which a combination of the compression yield surface and the crack detection surface with a damaged elasticity concept is employed to describe the failure of concrete. The arch dam with practical mechanical properties of the upper and lower abutments is firstly studied with emphasis on its cracking behavior during overloading. Then, a comprehensive sensitivity analysis is carried out to investigate the influence of the ratio of the mechanical properties of upper abutment to those of lower abutment on dam failure with prime attention placed on the failure mode. Simulation results indicate the adopted smeared crack model is well-suited to the crack analysis of concrete arch dam. It is shown that cracking is localized around the interface between upper and lower abutments, which leads to a fast crack growth in the through-thickness direction of dam and finally causes the dam failure. Furthermore, the sensitivity analysis presents three types of failure modes corresponding to different ratio value, wherein Modes II and III should be avoided since the weak upper abutment plays a predominant role in the cracking and failure of concrete arch dam.


1982 ◽  
Vol 104 (2) ◽  
pp. 397-405 ◽  
Author(s):  
E. Hashish ◽  
T. S. Sankar ◽  
M. O. M. Osman

Two mathematical models for the nonlinear hydrodynamic film forces in a finite bearing are developed including a practical adaptation of the cavitation phenomenon. Using the linearity of the Reynolds equation for incompressible film, the pressure components are effectively decomposed and the Reynolds equation is rearranged for general solution by a finite element program in which only the L/d ratio and the eccentricity ratio are to be specified. The different possibilities of partial film profile location in a general dynamic case are demonstrated. The two partial film models possess the required accuracy of the finite bearing approach with the simplicity of the known long and short bearing approximations which are shown as the upper and lower bounds for the present case. The finite bearing approach presented are particularly suitable for nonlinear dynamic analysis.


2011 ◽  
Vol 63-64 ◽  
pp. 421-424
Author(s):  
Miao Feng ◽  
Guan Ping ◽  
Wang Bo

Based on scheme of Dalian gulf cross-sea bridge, in this paper, a 3-dimensional FE model for Self-anchored cable-stayed suspension bridge is established with finite element program and pile-soil-structure interaction is simulated by use of the equivalent embed fixation model. Based on the FE model, model analysis is carried out and the effects of pile-soil-structure interaction on dynamic behavior of long-span self-anchored cable-stayed suspension bridge are specially studied. The seismic response analysis result considering that pile-soil-structure interaction was compared with that of without considering such interaction. The analysis result show that interaction reduced horizontal displacement in middle span of stiffening beam and top of tower, horizontal moment not only at bottom of tower, but also assistant piers. The research results provide some theoretical foundation to composite structure system.


1995 ◽  
Vol 2 (3) ◽  
pp. 193-204 ◽  
Author(s):  
Sang-Ho Lee ◽  
Ted Belytschko

The implementation and application of h-adaptivity in an explicit finite element program for nonlinear structural dynamics is described. Particular emphasis is placed on developing procedures for general purpose structural dynamics programs and efficiently handling adaptivity in shell elements. New projection techniques for error estimation and projecting variables on new meshes after fission or fusion are described. Several problems of severe impact are described.


Sign in / Sign up

Export Citation Format

Share Document