scholarly journals Thermal–hydraulic–mechanical (THM) behaviour of a large-scale in situ heating experiment during cooling and dismantling

2012 ◽  
Vol 49 (10) ◽  
pp. 1169-1195 ◽  
Author(s):  
M. Sánchez ◽  
A. Gens ◽  
L. Guimarães

A geological disposal facility for high-level radioactive waste (HLW) encompasses both natural (host rock) and (generally clay-based) engineered barriers. Many processes can influence, either positively or negatively, the effectiveness of the safety functions of isolation and retardation. This paper focuses on the analysis of a large-scale heating test when subjected to cooling and subsequent partial dismantling. The experiment reproduces the conditions of an HLW repository at full scale under realistic conditions. Key thermal, hydraulic, and mechanical (THM) variables, such as temperature, relative humidity, stresses, and fluid pressures, were measured in the clay barrier and surrounding rock. The experimental observations recorded during the cooling down and clay barrier excavation are analyzed in light of a fully coupled THM finite element formulation. This analysis has provided the opportunity to explore the behaviour of the clay and natural barriers under conditions very relevant for the repository performance but not analyzed previously. Overall, the model predictions are quite satisfactory when compared against experimental observations. Furthermore, model predictions for a period of 20 years, including the transient phase induced by the partial dismantling, are also presented. This additional analysis has allowed a better understanding of the effect of thermal gradient on long-term clay hydration.

Author(s):  
Bruno Kursten ◽  
Frank Druyts ◽  
Pierre Van Iseghem

Abstract The current worldwide trend for the final disposal of conditioned high-level, medium-level and long-lived alpha-bearing radioactive waste focuses on deep geological disposal. During the geological disposal, the isolation between the radioactive waste and the environment (biosphere) is realised by the multibarrier principle, which is based on the complementary nature of the various natural and engineered barriers. One of the main engineered barriers is the metallic container (overpack) that encloses the conditioned waste. In Belgium, the Boom Clay sediment is being studied as a potential host rock formation for the final disposal of conditioned high-level radioactive waste (HLW) and spent fuel. Since the mid 1980’s, SCK•CEN has developed an extensive research programme aimed at evaluating the suitability of a wide variety of metallic materials as candidate overpack material for the disposal of HLW. A multiple experimental approach is applied consisting of i) in situ corrosion experiments, ii) electrochemical experiments (cyclic potentiodynamic polarisation measurements and monitoring the evolution of ECORR as a function of time), and iii) immersion experiments. The in situ corrosion experiments were performed in the underground research facility, the High Activity Disposal Experimental Site, or HADES, located in the Boom clay layer at a depth of 225 metres below ground level. These experiments aimed at predicting the long-term corrosion behaviour of various candidate container materials. It was believed that this could be realised by investigating the medium-term interactions between the container materials and the host formation. These experiments resulted in a change of reasoning at the national authorities concerning the choice of over-pack material from the corrosion-allowance material carbon steel towards corrosion-resistant materials such as stainless steels. The main arguments being the severe pitting corrosion during the aerobic period and the large amount of hydrogen gas generated during the subsequent anaerobic period. The in situ corrosion experiments however, did not allow to unequivocally quantify the corrosion of the various investigated candidate overpack materials. The main shortcoming was that they did not allow to experimentally separate the aerobic and anaerobic phase. This resulted in the elaboration of a new laboratory programme. Electrochemical corrosion experiments were designed to investigate the effect of a wide variety of parameters on the localised corrosion behaviour of candidate overpack materials: temperature, SO42−, Cl−, S2O32−, oxygen content (aerobic - anaerobic),… Three characteristic potentials can be derived from the cyclic potentiodynamic polarisation (CPP) curves: i) the open circuit potential, OCP, ii) the critical potential for pit nucleation, ENP, and iii) the protection potential, EPP. Monitoring the open circuit potential as a function of time in clay slurries, representative for the underground environment, provides us with a more reliable value for the corrosion potential, ECORR, under disposal conditions. The long-term corrosion behaviour of the candidate overpack materials can be established by comparing the value of ECORR relative to ENP and EPP (determined from the CPP-curves). The immersion tests were developed to complement the in situ experiments. These experiments aimed at determining the corrosion rate and to identify the corrosion processes that can occur during the aerobic and anaerobic period of the geological disposal. Also, some experiments were elaborated to study the effect of graphite on the corrosion behaviour of the candidate overpack materials.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


2021 ◽  
Vol 13 (14) ◽  
pp. 2848
Author(s):  
Hao Sun ◽  
Qian Xu

Obtaining large-scale, long-term, and spatial continuous soil moisture (SM) data is crucial for climate change, hydrology, and water resource management, etc. ESA CCI SM is such a large-scale and long-term SM (longer than 40 years until now). However, there exist data gaps, especially for the area of China, due to the limitations in remote sensing of SM such as complex topography, human-induced radio frequency interference (RFI), and vegetation disturbances, etc. The data gaps make the CCI SM data cannot achieve spatial continuity, which entails the study of gap-filling methods. In order to develop suitable methods to fill the gaps of CCI SM in the whole area of China, we compared typical Machine Learning (ML) methods, including Random Forest method (RF), Feedforward Neural Network method (FNN), and Generalized Linear Model (GLM) with a geostatistical method, i.e., Ordinary Kriging (OK) in this study. More than 30 years of passive–active combined CCI SM from 1982 to 2018 and other biophysical variables such as Normalized Difference Vegetation Index (NDVI), precipitation, air temperature, Digital Elevation Model (DEM), soil type, and in situ SM from International Soil Moisture Network (ISMN) were utilized in this study. Results indicated that: 1) the data gap of CCI SM is frequent in China, which is found not only in cold seasons and areas but also in warm seasons and areas. The ratio of gap pixel numbers to the whole pixel numbers can be greater than 80%, and its average is around 40%. 2) ML methods can fill the gaps of CCI SM all up. Among the ML methods, RF had the best performance in fitting the relationship between CCI SM and biophysical variables. 3) Over simulated gap areas, RF had a comparable performance with OK, and they outperformed the FNN and GLM methods greatly. 4) Over in situ SM networks, RF achieved better performance than the OK method. 5) We also explored various strategies for gap-filling CCI SM. Results demonstrated that the strategy of constructing a monthly model with one RF for simulating monthly average SM and another RF for simulating monthly SM disturbance achieved the best performance. Such strategy combining with the ML method such as the RF is suggested in this study for filling the gaps of CCI SM in China.


Author(s):  
Arndt Wiessner ◽  
Jochen A. Müller ◽  
Peter Kuschk ◽  
Uwe Kappelmeyer ◽  
Matthias Kästner ◽  
...  

The large scale of the contamination by the former carbo-chemical industry in Germany requires new and often interdisciplinary approaches for performing an economically sustainable remediation. For example, a highly toxic and dark-colored phenolic wastewater from a lignite pyrolysis factory was filled into a former open-cast pit, forming a large wastewater disposal pond. This caused an extensive environmental pollution, calling for an ecologically and economically acceptable strategy for remediation. Laboratory-scale investigations and pilot-scale tests were carried out. The result was the development of a strategy for an implementation of full-scale enhanced in situ natural attenuation on the basis of separate habitats in a meromictic pond. Long-term monitoring of the chemical and biological dynamics of the pond demonstrates the metamorphosis of a former highly polluted industrial waste deposition into a nature-integrated ecosystem with reduced danger for the environment, and confirmed the strategy for the chosen remediation management.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuesong Tang ◽  
Wenchao Sun ◽  
Xin Zhang ◽  
Pengju Liu

Deep mining has become the normal state of coal mining; compared with the mine with shallow buried depth, the consequent high level of in situ stress and complex distribution have brought severe threats to the stability of the stope and the surrounding rock of the roadway. In this research, taking the 121304 working face of Kouzidong Mine as the engineering background, the characteristics of mining-induced stress distribution under complex in situ stress environment in deep mining are analyzed by using on-site measurement of the original rock stress and mining stress, establishing a theoretical model centered on the middle section of the working face, and establishing large-scale numerical calculation models for different advancing directions. It was found that under deep mining conditions, the maximum stress of the original rock is 25.12 MPa, and the direction is vertical. The advanced influence range of mining stress is about 150 m, and the abutment pressure presents a three-peak distribution characteristic in front of the working face. The research results provide important theoretical guiding value for guiding the mining of coal mines with similar geological conditions.


Oryx ◽  
2002 ◽  
Vol 36 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Mike Maunder ◽  
Wayne Page ◽  
John Mauremootoo ◽  
Richard Payendee ◽  
Yousoof Mungroo ◽  
...  

Abstract The conservation status of the five genera and 11 species of palm endemic to the Mascarene Islands (Mauritius, La Réunion and Rodriques) are reviewed. All species are threatened with extinction; nine taxa are classified as Critically Endangered and four as Endangered on the 2000 IUCN Red List. Two taxa survive as single wild specimens (Hyophorbe amaricaulis and Dictyosperma album var. conjugatum); an additional seven taxa have wild populations of 100 or fewer. Although the historical phase of large-scale forest clearance has passed, the remaining palm populations in the Mascarenes are under threat from the effects of population fragmentation, invasive plants and animals, and high levels of seed predation that prevent natural regeneration. The advantages of in situ management for the recovery of these palm populations are discussed. Without a long-term conservation programme, utilising both in situ and ex situ management, extinction of wild populations will occur.


Author(s):  
Jianhui Xie ◽  
R. S. Amano

In fluid flow and heat transfer, the finite element based fully coupling solution for all conservation equations is cost effective for most of the two dimensional, isothermal problems, but suffers in the storage and solution efficiency for large three dimensional problems. The segregated solution algorithm has been designed to address large scale simulation with avoiding the direct formulation of a global matrix. There is trade-off between performing a large number of less expensive iterations by segregated solvers compared to less number of more expensive fully coupled solvers. In this paper, a Finite Element based scheme based on preconditioned GMRES coupled algorithm and SUPG (Streamline Upwind Petrov-Galerkin) pressure prediction/correction segregated formulations have been discussed to solve the steady Navier-Stokes equations. A systematic comparison and benchmark between the segregated and fully coupled formulation has been presented to evaluate the individual benefits and strengths of the coupling and segregated procedure by studying lid-driven cavity problem and large industry application problem with respect to the system storage and solution convergence.


2012 ◽  
Author(s):  
◽  
Wenjuan Wang

Forest landscape models (FLMs) have increasingly become important tools for exploring forest landscape changes by predicting forest vegetation dynamics over large spatial scales. However, two challenges confronting FLMs have persisted: how to simulate fine, site-scale processes while making large-scale (landscape and regional) simulation feasible, and how to fully take advantage of extensive U.S. Forest Service Inventory and Analysis (FIA) data to initialize and constraint model parameters. In this dissertation, first, a new FLM, LANDIS PRO was developed. In LANDIS PRO, forest succession and dynamics are simulated by incorporating species-, stand-, and landscape-scale processes by tracking number of trees by species age cohort. Because stand-scale resource competition is achieved by implementing rather than simulating the emergent properties of stand development, LANDIS PRO is computationally efficient, which makes large-scale simulation feasible. Since model parameters and simulation results are comparatively straightforward to forest inventory data, current intensive forest inventory data can be directly applied for model initialization and to constrain model parameters. Validation of FLMs is essential to ensure users’ confidence in model predictions and achieve reliable management decision making. To date, validation of FLMs has been limited due to lack of suitable data. However, recent advances in FLMs, together with increasingly available spatiotemporal data make FLM validation feasible. In this dissertation, second, I proposed a framework for validating forest landscape projections from LANDIS PRO using Forest Inventory Analysis (FIA) data. The proposed framework incorporated data assimilation techniques to constrain model parameters and the initial state of the landscape by verifying the initialized landscape and iteratively calibrating the model parameters. The model predictions were rigorously validated against independent FIA data at multiple scales, and the long-term natural successional pattern was also verified against empirical studies. Results showed model predictions were able to capture much of the variation overtime in species basal area and tree density at stand-, landtype- , and landscape-scales. Subsequent long-term predictions of natural succession patterns were consistent with expected changes in tree species density of oak-dominated forests in the absence of disturbance. Lastly, I used LANDIS PRO, a forest landscape model that includes stand-scale species density and basal area to evaluate the potential landscape-scale effects of alternative harvest methods (thinning, clearcutting and group selection) on oak decline mitigation. Projections indicated that forest harvesting can be effective in mitigating oak decline. Group selection and clearcutting were the most effective methods in the management of oak decline in the short-term (20 years) and mid-term (50 years), respectively. However, in the long-run (100 years), there was no significant difference predicted among the three methods.


Géotechnique ◽  
2009 ◽  
Vol 59 (4) ◽  
pp. 377-399 ◽  
Author(s):  
A. Gens ◽  
M. Sánchez ◽  
L. Do N. Guimarães ◽  
E. E. Alonso ◽  
A. Lloret ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document