Blood pressure and cardiac tissue responses to prostacyclin (PGI2) in various species

1982 ◽  
Vol 60 (2) ◽  
pp. 134-139 ◽  
Author(s):  
G. A. Collins ◽  
B. A. MacLeod ◽  
M. J. A. Walker

The effect of prostacyclin (PGI2) on blood pressure and heart rate (in vivo) and on isolated heart tissue has been investigated in different species. Isolated cardiac tissue had limited resposes to PGI2 tested at 10−13 to 10−5 M. Cultured neonatal rat heart cells did not respond to PGI2, neither did intact rat hearts or rabbit cardiac tissue. Guinea pig and rat atria showed limited dose-dependent responses to PGI2 at concentrations greater than 10−7 M. In rat atria, 10−5 M PGI2 produced a limited elevation of tissue cAMP content. When given by intravenous injection or infusion, PGI2 produced hypotension in anaesthetized primates (three species), rat, rabbit, pig, and dog. As a vasodepressor in all species, PGI2 (on a weight basis) was more active than prostaglandins of the B or E type and, in most species tested, it was approximately five times more active than PGE2. Heart responses in intact animals were often paradoxical in that decreases in heart rate often accompanied blood pressure falls.

Author(s):  
W.G. Wier

A fundamentally new understanding of cardiac excitation-contraction (E-C) coupling is being developed from recent experimental work using confocal microscopy of single isolated heart cells. In particular, the transient change in intracellular free calcium ion concentration ([Ca2+]i transient) that activates muscle contraction is now viewed as resulting from the spatial and temporal summation of small (∼ 8 μm3), subcellular, stereotyped ‘local [Ca2+]i-transients' or, as they have been called, ‘calcium sparks'. This new understanding may be called ‘local control of E-C coupling'. The relevance to normal heart cell function of ‘local control, theory and the recent confocal data on spontaneous Ca2+ ‘sparks', and on electrically evoked local [Ca2+]i-transients has been unknown however, because the previous studies were all conducted on slack, internally perfused, single, enzymatically dissociated cardiac cells, at room temperature, usually with Cs+ replacing K+, and often in the presence of Ca2-channel blockers. The present work was undertaken to establish whether or not the concepts derived from these studies are in fact relevant to normal cardiac tissue under physiological conditions, by attempting to record local [Ca2+]i-transients, sparks (and Ca2+ waves) in intact, multi-cellular cardiac tissue.


2021 ◽  
Vol 22 (9) ◽  
pp. 5006
Author(s):  
Jelica Grujić-Milanović ◽  
Vesna Jaćević ◽  
Zoran Miloradović ◽  
Djurdjica Jovović ◽  
Ivica Milosavljević ◽  
...  

Hypertension is one of the most prevalent and powerful contributors of cardiovascular diseases. Malignant hypertension is a relatively rare but extremely severe form of hypertension accompanied with heart, brain, and renal impairment. Resveratrol, a recently described grape-derived, polyphenolic antioxidant molecule, has been proposed as an effective agent in the prevention of cardiovascular diseases. This study was designed to examine chronic resveratrol administration on blood pressure, oxidative stress, and inflammation, with special emphasis on cardiac structure and function in two models of experimental hypertension. The experiments were performed in spontaneously (SHRs) and malignantly hypertensive rats (MHRs). The chronic administration of resveratrol significantly decreased blood pressure in both spontaneously and malignant hypertensive animals. The resveratrol treatment ameliorated morphological changes in the heart tissue. The immunohistochemistry of the heart tissue after resveratrol treatment showed that both TGF-β and Bax were not present in the myocytes of SHRs and were present mainly in the myocytes of MHRs. Resveratrol suppressed lipid peroxidation and significantly improved oxidative status and release of NO. These results suggest that resveratrol prevents hypertrophic and apoptotic consequences induced by high blood pressure with more pronounced effects in malignant hypertension.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


1982 ◽  
Vol 50 (1) ◽  
pp. 219-230 ◽  
Author(s):  
Richard J. Roberts ◽  
Theodore C. Weerts

This study was designed to determine if visualization of anger- and fear-provoking scenes produced differential physiological patterns similar to those produced by in vivo manipulations. Normotensive college students were selected on the basis of their responses to newly developed Anger and Fear/Anxiety questionnaires and for their ability to construct arousing scenes during a screening interview. In a 2 × 2 design (intensity × emotion), four scenes (high and low anger, high and low fear) were constructed individually for each of 16 subjects to imagine. Diastolic blood pressure, systolic blood pressure, and heart rate were monitored during visualization of each scene. Change in diastolic blood pressure was significantly greater for high anger than for high fear as predicted. Analysis of change in heart rate and systolic blood pressure showed significant effects for intensity only. These results provide further support for the concept of physiological differentiation in human emotion and suggest the utility of imagery for systematic study of human emotional responding.


Author(s):  
Zhipeng Sun ◽  
Luqi Wang ◽  
Lu Han ◽  
Yue Wang ◽  
Yuan Zhou ◽  
...  

Background: Calsequestrins (Casqs), comprising the Casq1 and Casq2 isoforms, buffer Ca 2+ and regulate its release in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle, respectively. Human inherited diseases associated with mutations in CASQ1 or CASQ2 include malignant hyperthermia/environmental heat stroke (MH/EHS) and catecholaminergic polymorphic ventricular tachycardia. However, patients with an MH/EHS event often suffer from arrhythmia for which the underlying mechanism remains unknown. Methods: Working hearts from conventional ( Casq1 -KO) and cardiac-specific ( Casq1 -CKO) Casq1 knockout mice were monitored in vivo and ex vivo by electrocardiogram and electrical mapping, respectively. MH was induced by 2% isoflurane and treated intraperitoneally with dantrolene. Time-lapse imaging was used to monitor intracellular Ca 2+ activity in isolated mouse cardiomyocytes or neonatal rat ventricular myocytes (NRVMs) with knockdown, over-expression or truncation of the Casq1 gene. Conformational change in both Casqs was determined by crosslinking Western blot analysis. Results: Like MH/EHS patients, Casq1 -KO and Casq1 -CKO mice had faster basal heart rate, and ventricular tachycardia upon exposure to 2% isoflurane, which could be relieved by dantrolene. Basal sinus tachycardia and ventricular ectopic electrical triggering also occurred in Casq1 -KO hearts ex vivo . Accordingly, the ventricular cardiomyocytes from Casq1 -CKO mice displayed dantrolene-sensitive increased Ca 2+ waves and diastole premature Ca 2+ transients/oscillations upon isoflurane. NRVMs with Casq1-knockdown had enhanced spontaneous Ca2+ sparks/transients upon isoflurane, while cells over-expressing Casq1 exhibited decreased Ca2+ sparks/transients that were absent in cells with truncation of 9 amino acids at the C-terminus of Casq1. Structural evaluation showed that most of the Casq1 protein was present as a polymer and physically interacted with RyR2 in the ventricular SR. The Casq1 isoform was also expressed in human myocardium. Mechanistically, exposure to 2% isoflurane or heating at 41ºC induced Casq1 oligomerization in mouse ventricular and skeletal muscle tissues, leading to a reduced Casq1/RyR2 interaction and increased RyR2 activity in the ventricle. Conclusions: Casq1 is expressed in the heart, where it regulates SR Ca 2+ release and heart rate. Casq1 deficiency independently causes MH/EHS-like ventricular arrhythmia by trigger-induced Casq1 oligomerization and a relief of its inhibitory effect on RyR2-mediated Ca 2+ release, thus revealing a new inherited arrhythmia and a novel mechanism for MH/EHS arrhythmogenesis.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Daniel Biermann ◽  
Michael Didié ◽  
Bijoy Chandapillai Karikkineth ◽  
Claudia Lange ◽  
Thomas Eschenhagen ◽  
...  

Engineered Heart Tissue (EHT) can be utilized to partially repair infarcted myocardium in rats. Here, we investigated the feasibility of EHT-grafts as transmural wall replacement in a heterotopic transplantation model. Methods: EHTs (diameter: 15 mm, thickness: 1– 4 mm) were generated from 12.5 ×10 6 neonatal rat heart cells, collagen type I, and matrigel. Similarly, non-contractile constructs were generated from rat cardiac fibroblasts (FB) and mesenchymal stem cells (MSC). Grafts were surgically inserted into large transmural defects (diameter: 6 mm) in the left ventricle of explanted donor hearts. Subsequently, “treated” hearts were transplanted into weight-matched (308±12 g; n=14), immune suppressed (cyclosporine, azathioprine, prednisolone) Wistar rats in heterotopic position. All transmural defects were also covered with an aortic patch to prevent bleeding from the ventricles. Sham surgeries included aortic patch implantations only. Heterotopic hearts were harvested after 28 days and subjected to morphological analyses by confocal laser scanning microscopy (CLSM). Results: Heart transplant weight at the time of implantation was 1.1±0.02 g (n=14). Heterotopic heart weight increased substantially in Sham (2.4±0.3 g, n=3) and FB-graft (2.1±0.1 g, n=3) animals, whereas MSC- (1.7±0.2 g, n=4) and EHT-graft (1.3±0.1 g, n=4; p<0.05 vs. Sham) animals showed a smaller or no increase in weight, respectively. EHT grafts remained contractile throughout the observation period. CLSM revealed that EHT-grafts established oriented muscle bundles (actin and actinin staining) inside the transmural defects and were strongly vascularized (CD31 and smooth muscle actin staining; lectin labeling) leading to partial reconstitution of the myocardial continuity. This was not observed in animals with FB- and MSC-grafts. However, MSC-grafts, but not FB-grafts, contained newly formed vessels with a markedly larger diameter than observed in EHT-grafts (21±6 vs. 5±0.7 μm; p<0.05). Conclusion: EHTs can be utilized as myocardial tissue grafts to reconstruct and prevent pathological enlargement of the left ventricle. This study constitutes a first step to establish a novel transmural myocardial repair technology involving fully bioengineered heart muscle.


1989 ◽  
Vol 67 (1) ◽  
pp. 250-255 ◽  
Author(s):  
J. P. Fluckiger ◽  
G. Gremaud ◽  
B. Waeber ◽  
A. Kulik ◽  
A. Ichino ◽  
...  

A new system was developed in our laboratory to continuously monitor intra-arterial pressure, heart rate, and sympathetic nerve activity in unanesthetized rats. The animals were prepared 24 h before the start of the experiments. Sympathoneural traffic was measured at the level of splanchnic nerve. The amplitude of the spikes recorded at this level was utilized to express sympathetic nerve activity. The amplitude of the residual electroneurogram signal present 30 min after the rats were killed was 32 +/- 2 mV (mean +/- SE; n = 11). For analysis, these background values were subtracted from values determined in vivo. The nerve we studied contains postganglionic fibers, since electrical activity decreased in response to ganglionic blockade with pentolinium (1.25 mg/min iv for 4 min). The amplitude of spikes fell by 43 +/- 4% (n = 4). Sympathetic nerve activity was highly reproducible at a 24-h interval (104 +/- 26 vs. 111 +/- 27 mV for the amplitude of spikes; n = 11). Dose-response curves to the alpha 1-stimulant methoxamine and to bradykinin were established in four rats. The increase in blood pressure induced by methoxamine caused a dose-dependent fall in sympathetic nerve activity, whereas the blood pressure reduction resulting from bradykinin was associated with a dose-dependent activation of sympathetic drive. These data therefore indicate that it is possible with out system to accurately measure sympathetic nerve activity in the awake rat, together with intra-arterial pressure and heart rate.


1984 ◽  
Vol 246 (5) ◽  
pp. C439-C449 ◽  
Author(s):  
P. J. Blackshear ◽  
R. A. Nemenoff ◽  
J. V. Bonventre ◽  
J. Y. Cheung ◽  
J. Avruch

We used a recently developed preparation of calcium-tolerant isolated rat cardiac ventricular cells to investigate certain aspects of hormone-mediated protein phosphorylation in heart tissue. Isoproterenol or dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) promoted the phosphorylation of at least 13 proteins and promoted the dephosphorylation of a single protein of relative molecular weight (Mr) 21,000, whose phosphorylation appeared to be stimulated by insulin. The isoproterenol-induced protein phosphorylations reached maximum levels for most proteins within 5 min at slightly different rates. However, when excess propranolol was added to the cells after exposure to isoproterenol, there appeared to be two major patterns of dephosphorylation: proteins that remained fully phosphorylated after propranolol addition, exemplified by proteins tentatively identified as troponin I and C-protein, and proteins that were rapidly dephosphorylated after propranolol, exemplified by phospholamban, the modulator of the sarcoplasmic reticulum calcium-dependent ATPase. The Mr 21,000 protein was rapidly dephosphorylated in response to isoproterenol and was rephosphorylated after addition of propranolol. This protein remains unidentified; it is not the Mr 19,000 myosin light chain whose phosphorylation state was unaffected by isoproterenol. This preparation of isolated heart cells provides a convenient way to investigate the biochemical effects resulting from exposure of the heart to hormones and can separate direct hormonal effects from those resulting from changes in contractility or heart rate.


1993 ◽  
Vol 265 (1) ◽  
pp. H103-H107 ◽  
Author(s):  
N. Toda ◽  
K. Ayajiki ◽  
T. Okamura

Basilar arterial diameters were angiographically measured in anesthetized dogs in which systemic blood pressure and heart rate were also monitored. Injections of NG-nitro-L-arginine (L-NNA), a NO synthase inhibitor, into the cisterna magna produced a significant, persistent decrease in arterial diameter, the effect being reversed by intracisternal injections of L-arginine. The vasoconstrictor effect of L-NNA was diminished in dogs treated with hexamethonium. On the other hand, treatment with phentolamine in a dose sufficient to lower blood pressure to a level similar to that attained with hexamethonium did not inhibit, but rather potentiated, the effect of intracisternal L-NNA. Nicotine injected into the vertebral artery significantly dilated the basilar artery. The effect was abolished by treatment with L-NNA applied intracisternally, the inhibition being reversed by the addition of L-arginine. Systemic blood pressure and heart rate were not altered by intracisternally applied L-NNA and L-arginine. These findings support the hypothesis that basilar arterial constriction caused by intracisternal L-NNA is associated with a suppression of NO synthesis in nitroxidergic nerves innervating the cerebroarterial wall rather than an elimination of basal release of NO from the endothelium. Functional importance of nitroxidergic vasodilator innervation in cerebral arteries in vivo is thus clarified.


1998 ◽  
Vol 275 (3) ◽  
pp. H760-H766 ◽  
Author(s):  
Leander V. Schuerch ◽  
Lilly M. Linder ◽  
Eric Grouzmann ◽  
Walter E. Haefeli

Human neuropeptide Y (hNPY) potentiates the postjunctional vasoconstrictor effects of α1-adrenoceptor agonists in animals and in human hand veins in vivo. We therefore hypothesized that such an interaction might also occur in the human arterial bed. With the present single-blind cross-over study in 12 healthy volunteers, the effect of subpressor doses of hNPY on the blood pressure response to α1-adrenoceptor stimulation was evaluated. Dose-response curves were constructed to intravenously infuse phenylephrine with and without coinfusion with two different doses of hNPY (1.4 and 14.3 pmol ⋅ kg−1 ⋅ min−1). Blood pressure, heart rate, and forearm blood flow were recorded, and plasma hNPY was determined. During infusion of the higher hNPY dose, which increased hNPY from 24.0 ± 12.0 to 495.1 ± 12.6 pmol/l, blood pressure curves were 2.4-fold shifted toward lower phenylephrine dose rates ( P < 0.001). Forearm vascular resistance showed a similar trend, whereas the counterregulatory decrease of heart rate was similar in both groups. In contrast, the lower hNPY dose rate producing a fourfold increase in hNPY concentrations did not modify the response to phenylephrine. This in vivo study in humans demonstrates that hNPY induced potentiating effects on α1-adrenergic constriction also in the systemic arterial circulation and suggests that circulating hNPY may participate in the control of vascular tone.


Sign in / Sign up

Export Citation Format

Share Document