sympathetic nerve
Recently Published Documents


TOTAL DOCUMENTS

4577
(FIVE YEARS 346)

H-INDEX

109
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Attila Kiss ◽  
Xia Lu ◽  
Michaela Schlederer ◽  
Patrick M Pilz ◽  
Petra Lujza Szabo ◽  
...  

Abstract Background Multiple potential interventions have been tested to protect the heart against myocardial ischemia/reperfusion (MIR) injury. Remote ischemic conditioning (RIC), an endogenous cardioprotective approach, could markedly improve cardiac function post-myocardial ischemia injury. In this study, we aimed to assess the effects of RIC on cardiac sympathetic nerve innervation and metabolism in the association with Chondroitin sulfate proteoglycans (GSPG). Methods Transient myocardial ischemia (30 min) is induced by ligature of the left anterior descending coronary artery ligation (LAD) in male Sprague Dawley rats (250-350 g), in vivo cardiac [11C]mHED and 2-[18F]FDG PET scans were performed at 14 days after ischemia. Remote ischemic preconditioning (RIPerc) was induced by three cycles of five-minute-long unilateral hind limb ischemia and intermittent five minutes of reperfusion during LAD occlusion period. The quantitative parameters were quantified in parametric polar maps. This standardized format facilitates the regional radioactive quantification of parameters in deficit regions to remote areas. The ex vivo radionuclide distribution was additionally identified using autoradiography. Myocardial neuron density and GSPG expression were assessed by immunohistochemistry. Results There was no significant difference in the metabolism-defected to the remote activity ratio (44.6±4.8% vs. 45.4±4.4%) between control rats (MIR) and treated (MIR+RIPerc) rats (P>0.05). Additionally, the mean nervous activity of denervated myocardium activity was significantly elevated in rats with RIPerc coupled with reduced denervated myocardium size compared to the rats MIR group (35.9±7.1% vs. 28.9±2.3% of the left ventricular (LV) remote area (P<0.05). These findings were associated with preserved LV systolic function and a significant reduction in GSPG expression in the myocardium. Conclusion RIPerc presented the effect on cardiac sympathetic nerve innervation following ischemia, but there is no significant effect on myocardial metabolism. A long-term outcome study is warranted.


2021 ◽  
Vol 12 ◽  
Author(s):  
Songwen Chen ◽  
Guannan Meng ◽  
Anisiia Doytchinova ◽  
Johnson Wong ◽  
Susan Straka ◽  
...  

Background: Skin sympathetic nerve activity (SKNA) and QT interval variability are known to be associated with ventricular arrhythmias. However, the relationship between the two remains unclear.Objective: The aim was to test the hypothesis that SKNA bursts are associated with greater short-term variability of the QT interval (STVQT) in patients with electrical storm (ES) or coronary heart disease without arrhythmias (CHD) than in healthy volunteers (HV).Methods: We simultaneously recorded the ECG and SKNA during sinus rhythm in patients with ES (N = 10) and CHD (N = 8) and during cold-water pressor test in HV (N = 12). The QT and QTc intervals were manually marked and calculated within the ECG. The STVQT was calculated and compared to episodes of SKNA burst and non-bursting activity.Results: The SKNA burst threshold for ES and HV was 1.06 ± 1.07 and 1.88 ± 1.09 μV, respectively (p = 0.011). During SKNA baseline and burst, the QT/QTc intervals and STVQT for ES and CHD were significantly higher than those of the HV. In all subjects, SKNA bursts were associated with an increased STVQT (from 6.43 ± 2.99 to 9.40 ± 5.12 ms, p = 0.002 for ES; from 9.48 ± 4.40 to 12.8 ± 5.26 ms, p = 0.016 for CHD; and from 3.81 ± 0.73 to 4.49 ± 1.24 ms, p = 0.016 for HV). The magnitude of increased STVQT in ES (3.33 ± 3.06 ms) and CHD (3.34 ± 2.34 ms) was both higher than that of the HV (0.68 ± 0.84 ms, p = 0.047 and p = 0.020).Conclusion: Compared to non-bursting activity, SKNA bursts were associated with a larger increase in the QTc interval and STVQT in patients with heart disease than in HV.


eNeuro ◽  
2021 ◽  
pp. ENEURO.0404-21.2021
Author(s):  
Zhigang Shi ◽  
Daniel S. Stornetta ◽  
Ruth L. Stornetta ◽  
Virginia L. Brooks

2021 ◽  
Vol 8 ◽  
Author(s):  
Le Li ◽  
Zhao Hu ◽  
Yulong Xiong ◽  
Yan Yao

Sympathetic overactivation plays an important role in promoting a variety of pathophysiological processes in cardiovascular diseases (CVDs), including ventricular remodeling, vascular endothelial injury and atherosclerotic plaque progression. Device-based sympathetic nerve (SN) regulation offers a new therapeutic option for some CVDs. Renal denervation (RDN) is the most well-documented method of device-based SN regulation in clinical studies, and several large-scale randomized controlled trials have confirmed its value in patients with resistant hypertension, and some studies have also found RDN to be effective in the control of heart failure and arrhythmias. Pulmonary artery denervation (PADN) has been clinically shown to be effective in controlling pulmonary hypertension. Hepatic artery denervation (HADN) and splenic artery denervation (SADN) are relatively novel approaches that hold promise for a role in cardiovascular metabolic and inflammatory-immune related diseases, and their first-in-man studies are ongoing. In addition, baroreflex activation, spinal cord stimulation and other device-based therapies also show favorable outcomes. This review summarizes the pathophysiological rationale and the latest clinical evidence for device-based therapies for some CVDs.


Author(s):  
Fang Tong ◽  
Qianru He ◽  
Wan-Jie Du ◽  
Huan Yang ◽  
Dongping Du ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Daniel Boulton ◽  
Chloe E. Taylor ◽  
Simon Green ◽  
Vaughan G. Macefield

We previously demonstrated that muscle sympathetic nerve activity (MSNA) increases to contracting muscle as well as to non-contracting muscle, but this was only assessed during isometric exercise at ∼10% of maximum voluntary contraction (MVC). Given that high-intensity isometric contractions will release more metabolites, we tested the hypothesis that the metaboreflex is expressed in the contracting muscle during high-intensity but not low-intensity exercise. MSNA was recorded continuously via a tungsten microelectrode inserted percutaneously into the right common peroneal nerve in 12 participants, performing isometric dorsiflexion of the right ankle at 10, 20, 30, 40, and 50% MVC for 2 min. Contractions were immediately followed by 6 min of post-exercise ischemia (PEI); 6 min of recovery separated contractions. Cross-correlation analysis was performed between the negative-going sympathetic spikes of the raw neurogram and the ECG. MSNA increased as contraction intensity increased, reaching mean values (± SD) of 207 ± 210 spikes/min at 10% MVC (P = 0.04), 270 ± 189 spikes/min at 20% MVC (P &lt; 0.01), 538 ± 329 spikes/min at 30% MVC (P &lt; 0.01), 816 ± 551 spikes/min at 40% MVC (P &lt; 0.01), and 1,097 ± 782 spikes/min at 50% MVC (P &lt; 0.01). Mean arterial pressure also increased in an intensity-dependent manner from 76 ± 3 mmHg at rest to 90 ± 6 mmHg (P &lt; 0.01) during contractions of 50% MVC. At all contraction intensities, blood pressure remained elevated during PEI, but MSNA returned to pre-contraction levels, indicating that the metaboreflex does not contribute to the increase in MSNA to contracting muscle even at these high contraction intensities.


Author(s):  
Mu Huang ◽  
Joseph C. Watso ◽  
Luke Belval ◽  
Frank A. Cimino III ◽  
Mads Fischer ◽  
...  

Hemorrhage is a leading cause of battlefield and civilian trauma deaths. Several pain medications, including fentanyl, are recommended for use in the prehospital (i.e., field setting) for a hemorrhaging solider. However, it is unknown whether fentanyl impairs arterial blood pressure (BP) regulation, which would compromise hemorrhagic tolerance. Thus, the purpose of this study was to test the hypothesis that an analgesic dose of fentanyl impairs hemorrhagic tolerance in conscious humans. Twenty-eight volunteers (13 females) participated in this double-blinded, randomized, placebo-controlled trial. We conducted a pre-syncopal limited progressive lower-body negative pressure test (LBNP; a validated model to simulate hemorrhage) following intravenous administration of fentanyl (75 µg) or placebo (saline). We quantified tolerance as a cumulative stress index (mmHg•min), which was compared between trials using a paired, two-tailed t-test. We also compared muscle sympathetic nerve activity (MSNA; microneurography) and beat-to-beat BP (photoplethysmography) during the LBNP test using a mixed effects model (time [LBNP stage] x trial). LBNP tolerance was not different between trials (Fentanyl: 647 ± 386 vs. Placebo: 676 ± 295 mmHg•min, P=0.61, Cohen's d = 0.08). Increases in MSNA burst frequency (time: p<0.01, trial: p=0.29, interaction: p=0.94) and reductions in mean BP (time: p<0.01, trial: p=0.50, interaction: p=0.16) during LBNP were not different between trials. These data, the first to be obtained in conscious humans, demonstrate that administration of an analgesic dose of fentanyl does not alter MSNA or BP during profound central hypovolemia, nor does it impair tolerance to this simulated hemorrhagic insult.


2021 ◽  
Vol 15 ◽  
Author(s):  
Chun Liu ◽  
Chien-Hung Lee ◽  
Shien-Fong Lin ◽  
Wei-Chung Tsai

Backgrounds: Acute myocardial infarction (AMI) affects the autonomic nervous system (ANS) function. The aim of our study is to detect the particular patterns of ANS regulation in AMI. We hypothesize that altered ANS regulation in AMI patients causes synchronized neural discharge (clustering phenomenon) detected by non-invasive skin sympathetic nerve activity (SKNA).Methods: Forty subjects, including 20 AMI patients and 20 non-AMI controls, participated in the study. The wide-band bioelectrical signals (neuECG) were continuously recorded on the body surface for 5 min. SKNA was signal processed to depict the envelope of SKNA (eSKNA). By labeling the clusters, the AMI subjects were separated into non-AMI, non-cluster appearing (AMINCA), and cluster appearing (AMICA) groups.Results: The average eSKNA was significantly correlated with HRV low-frequency (LF) power (rho = −0.336) and high-frequency power (rho = −0.372). The cross-comparison results demonstrated that eSKNA is a valid surrogate marker to assess ANS in AMI patients. The frequency of cluster occurrence was 0.01–0.03 Hz and the amplitude was about 3 μV. The LF/HF ratio of AMICA (median: 1.877; Q1–Q3: 1.483–2.413) revealed significantly lower than AMINCA (median: 3.959; Q1–Q3: 1.840–6.562). The results suggest that the SKNA clustering is a unique temporal pattern of ANS synchronized discharge, which could indicate the lower sympathetic status (by HRV) in AMI patients.Conclusion: This is the first study to identify SKNA clustering phenomenon in AMI patients. Such a synchronized nerve discharge pattern could be detected with non-invasive SKNA signals. SKNA temporal clustering could be a novel biomarker to classify ANS regulation ability in AMI patients.Clinical and Translational Significance: SKNA is higher in AMI patients than in control and negatively correlates with parasympathetic parameters. SKNA clustering is associated with a lower LF/HF ratio that has been shown to correlate with sudden cardiac death in AMI. The lack of SKNA temporal clustering could indicate poor ANS regulation in AMI patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Christine Vayssettes-Courchay ◽  
Jonathan Melka ◽  
Clothilde Philouze ◽  
Najah Harouki

The aim of our study is to investigate the sympathetic output and baroreflex via renal sympathetic nerve activity (RSNA) recording in a model of severe hypertension which exhibits arterial, cardiac, and renal damages, the spontaneously hypertensive rat (SHR) under lowered NO bioavailability. SHR are treated from 18 to 20 weeks of age with a low dose of L-NAME, a NO synthase inhibitor, in drinking water (SHRLN) and compared to SHR and normotensive Wistar Kyoto (WKY) rats. After the two-week treatment, rats are anesthetized for RSNA, mean blood pressure (MBP), and heart rate (HR) recording. MBP is higher in SHR than in WKY and higher in SHRLN than in SHR. Compared to WKY, SHR displays an alteration in the baroreflex with a displacement of the sympathoinhibition curve to highest pressures; this displacement is greater in SHRLN rats. The bradycardic response is reduced in SHRLN compared to both SHR and WKY. In hypertensive rats, SHR and SHRLN, basal RSNA is modified, the maximal amplitude of burst is reduced, but minimal values are increased, indicating an increased basal RSNA with reduced bursting activity. The temporal correlation between RSNA and HR is preserved in SHR but altered in 10 SHRLN out of 10. The RSNA inhibition triggered by the Bezold–Jarisch reflex activation is not modified in hypertensive rats, SHR or SHRLN, in contrast to that triggered by the baroreflex. Histological analysis of the carotid bifurcation does not reveal any abnormality in SHRLN at the level of the carotid sinus. In conclusion, data indicate that the sympathetic outflow is altered in SHRLN with a strong reduction of the baroreflex sympathoinhibition and suggest that its central pathway is not involved. These additional results on SHRLN also confirm the usefulness of this model of severe hypertension with multiple target organ damages.


Sign in / Sign up

Export Citation Format

Share Document