scholarly journals Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays

Author(s):  
Archil Kobakhidze ◽  
Cyril Lagger ◽  
Adrian Manning ◽  
Jason Yue
2012 ◽  
Vol 2012 (10) ◽  
pp. 024-024 ◽  
Author(s):  
Leonardo Leitao ◽  
Ariel Mégevand ◽  
Alejandro D Sánchez

2017 ◽  
Vol 32 (08) ◽  
pp. 1750049 ◽  
Author(s):  
Andrea Addazi

We discuss the possibility to indirectly test first-order phase transitions of hidden sectors. We study the interesting example of a Dark Standard Model (D-SM) with a deformed parameter space in the Higgs potential. A dark electroweak phase transition can be limited from next future experiments like eLISA and DECIGO.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750114 ◽  
Author(s):  
Archil Kobakhidze ◽  
Adrian Manning ◽  
Jason Yue

Within the Standard Model with nonlinearly realized electroweak symmetry, the LHC Higgs boson may reside in a singlet representation of the gauge group. Several new interactions are then allowed, including anomalous Higgs self-couplings, which may drive the electroweak phase transition to be strongly first-order. In this paper, we investigate the cosmological electroweak phase transition in a simplified model with an anomalous Higgs cubic self-coupling. We look at the feasibility of detecting gravitational waves produced during such a transition in the early universe by future space-based experiments. We demonstrate an intriguing interplay between collider measurements of the Higgs self-coupling and these potential gravitational wave measurements. We find that for the range of relatively large cubic couplings, [Formula: see text], [Formula: see text]mHz frequency gravitational waves can be observed by eLISA, while BBO will potentially be able to detect waves in a wider frequency range, [Formula: see text][Formula: see text]mHz.


2018 ◽  
Vol 168 ◽  
pp. 05001 ◽  
Author(s):  
Toshinori Matsui

Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.


2018 ◽  
Vol 2018 (6) ◽  
Author(s):  
Katsuya Hashino ◽  
Mitsuru Kakizaki ◽  
Shinya Kanemura ◽  
Pyungwon Ko ◽  
Toshinori Matsui

Sign in / Sign up

Export Citation Format

Share Document