scholarly journals Exploring $$\hbox {CE}\nu \hbox {NS}$$ with NUCLEUS at the Chooz nuclear power plant

2019 ◽  
Vol 79 (12) ◽  
Author(s):  
G. Angloher ◽  
F. Ardellier-Desages ◽  
A. Bento ◽  
L. Canonica ◽  
A. Erhart ◽  
...  

AbstractCoherent elastic neutrino–nucleus scattering ($$\hbox {CE}\nu \hbox {NS}$$CEνNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of anti-neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study $$\hbox {CE}\nu \hbox {NS}$$CEνNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low-energy threshold and a time response fast enough to be operated under above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measuring $$\hbox {CE}\nu \hbox {NS}$$CEνNS of reactor anti-neutrinos. A new experimental site, the Very-Near-Site (VNS), at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 $$\hbox {GW}_{\mathrm {th}}$$GWth reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental set-up with dedicated active and passive background reduction techniques and first background estimations are presented. Furthermore, the feasibility to operate the detectors in coincidence with an active muon veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the physics potential of NUCLEUS at the Chooz nuclear power plant.

Author(s):  
John T. Kitzmiller ◽  
Richard G. Anderson ◽  
Laura L. Genutis ◽  
Dennis M. Popp

Core Damage Frequency (CDF) and Large Release Frequency (LRF) can be greatly affected by the application of Instrumentation and Control (I&C) within the control and safety systems utilized in the operations of a nuclear power plant. It is important that the modeling of these systems be an accurate representation of the I&C design to capture the effects of the I&C on the operations of the nuclear power plant as far as control and safety that are needed for the effective and safe operation of power generation. Various sensitivities can be performed on I&C modeling in the AP1000 Probabilistic Risk Assessment (PRA) to determine the impact on CDF. These sensitivities can be in the areas of base reliability values (probabilities), common cause failures (CCF) of software as well as common cause (CC) factors of computer modules. Insights can be found as to the effects of these CCFs by varying the modeled probabilities in the most conservative direction to determine how the model will respond. The model response, i.e., CDF and cutset importance orders will provide insights as to how sensitive I&C modeling is to CCF and how sensitive the rest of the PRA model is to I&C. Increasing failure probability of the Protection and Safety Monitoring System (PMS) and Plant Control System (PLS), and Diverse Actuation System (DAS) to explore the minimum reliability that would support favorable CDF and LRF values, as well as, the effect of total failure of the PMS (no credit taken for PMS in core damage sequences) and PLS (no credit taken for PLS in core damage sequences) on CDF values are explored. Sensitivity analyses show that the CDF increases if no credit is taken for operator actions. For AP1000, this sensitivity study indicated a decrease in dependence on operator actions over conventional nuclear plants. This conclusion is likely a result of the increased reliability of the PMS to automatically actuate the given systems and components. For this reason, the most important system is PMS, in the case where no credit is taken for PMS in core damage sequences.


2016 ◽  
Vol 31 (4) ◽  
pp. 318-326
Author(s):  
Woongbae Kim ◽  
Hyungwook Jang ◽  
Seungjong Oh ◽  
Sangyong Lee

The Fukushima Daiichi nuclear power plant accident shows that natural disasters such as earthquakes and the subsequent tsunamis can cause station blackout for several days. The electric energy required for essential systems during a station blackout is provided from emergency backup batteries installed at the nuclear power plant. In South Korea, in the event of an extended station blackout, the life of these emergency backup batteries has recently been extended from 8 hours to 24 hours at Shin-Kori 5, 6, and APR1400 for design certification. For a battery life of 24 hours, available safety means system, equipment and procedures are studied and analyzed in their ability to cope with an extended station blackout. A sensitivity study of reactor coolant pump seal leakage is performed to verify how different seal leakages could affect the system. For simulating extended station blackout scenarios, the best estimate MARS-KS computer code was used. In this paper, an APR1400 RELAP5 input deck was developed for station blackout scenario to analyze operation strategy by manually depressurizing the reactor coolant system through the steam generator's secondary side. Additionally, a sensitivity study on reactor coolant pump seal leakage was carried out.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


Sign in / Sign up

Export Citation Format

Share Document